Suppr超能文献

水疱性口炎病毒在白蛉细胞中持续复制后,哺乳动物和昆虫宿主出现的极端适应性差异。

Extreme fitness differences in mammalian and insect hosts after continuous replication of vesicular stomatitis virus in sandfly cells.

作者信息

Novella I S, Clarke D K, Quer J, Duarte E A, Lee C H, Weaver S C, Elena S F, Moya A, Domingo E, Holland J J

机构信息

Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA.

出版信息

J Virol. 1995 Nov;69(11):6805-9. doi: 10.1128/JVI.69.11.6805-6809.1995.

Abstract

Continuous, persistent replication of a wild-type strain of vesicular stomatitis virus in cultured sandfly cells for 10 months profoundly decreased virus replicative fitness in mammalian cells and greatly increased fitness in sandfly cells. After persistent infection of sandfly cells, fitness was over 2,000,000-fold greater than that in mammalian cells, indicating extreme selective differences in the environmental conditions provided by insect and mammalian cells. The sandfly-adapted virus also showed extremely low fitness in mouse brain cells (comparable to that in mammalian cell cultures). It also showed an attenuated phenotype, requiring a nearly millionfold higher intracranial dose than that of its parent clone to kill mice. A single passage of this adapted virus in BHK-21 cells at 37 degrees C restored fitness to near neutrality and also restored mouse neurovirulence. These results clearly illustrate the enormous capacity of RNA viruses to adapt to changing selective environments.

摘要

水泡性口炎病毒野生型毒株在培养的白蛉细胞中持续、持久复制10个月后,其在哺乳动物细胞中的复制适应性大幅下降,而在白蛉细胞中的适应性则大幅增加。在白蛉细胞持续感染后,其适应性比在哺乳动物细胞中高出200多万倍,这表明昆虫细胞和哺乳动物细胞所提供的环境条件存在极大的选择性差异。适应白蛉的病毒在小鼠脑细胞中的适应性也极低(与在哺乳动物细胞培养物中的情况相当)。它还表现出减毒表型,杀死小鼠所需的颅内剂量比其亲本克隆高出近100万倍。这种适应病毒在37摄氏度的BHK - 21细胞中传代一次后,适应性恢复到接近中性水平,同时也恢复了小鼠神经毒力。这些结果清楚地说明了RNA病毒适应不断变化的选择性环境的巨大能力。

相似文献

5
RNA virus quasispecies populations can suppress vastly superior mutant progeny.
J Virol. 1990 Dec;64(12):6278-81. doi: 10.1128/JVI.64.12.6278-6281.1990.
6
Cost of host radiation in an RNA virus.
Genetics. 2000 Dec;156(4):1465-70. doi: 10.1093/genetics/156.4.1465.
8
Emergence of mammalian cell-adapted vesicular stomatitis virus from persistent infections of insect vector cells.
J Virol. 2007 Jun;81(12):6664-8. doi: 10.1128/JVI.02365-06. Epub 2007 Apr 11.
9
Fitness analyses of vesicular stomatitis strains with rearranged genomes reveal replicative disadvantages.
J Virol. 2004 Sep;78(18):9837-41. doi: 10.1128/JVI.78.18.9837-9841.2004.

引用本文的文献

1
-Specific Fitness Increase of Vesicular Stomatitis Virus in Insect-to-Insect Infections.
Insects. 2024 Jan 5;15(1):34. doi: 10.3390/insects15010034.
5
Experimental evolution for niche breadth in bacteriophage T4 highlights the importance of structural genes.
Microbiologyopen. 2020 Feb;9(2):e968. doi: 10.1002/mbo3.968. Epub 2019 Nov 28.
6
TRIM69 Inhibits Vesicular Stomatitis Indiana Virus.
J Virol. 2019 Sep 30;93(20). doi: 10.1128/JVI.00951-19. Print 2019 Oct 15.
8
Kinetic Modeling of Virus Growth in Cells.
Microbiol Mol Biol Rev. 2018 Mar 28;82(2). doi: 10.1128/MMBR.00066-17. Print 2018 Jun.
10
S2M: A Stochastic Simulation Model of Poliovirus Genetic State Transition.
Bioinform Biol Insights. 2016 Jun 27;10:81-95. doi: 10.4137/BBI.S38194. eCollection 2016.

本文引用的文献

1
West Nile virus infection in arthropods.
Am J Trop Med Hyg. 1956 Jan;5(1):76-85. doi: 10.4269/ajtmh.1956.5.76.
2
The evolution of virulence.
Sci Am. 1993 Apr;268(4):86-93. doi: 10.1038/scientificamerican0493-86.
4
Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses.
J Virol. 1993 Jan;67(1):222-8. doi: 10.1128/JVI.67.1.222-228.1993.
5
Punctuated equilibrium and positive Darwinian evolution in vesicular stomatitis virus.
Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10424-8. doi: 10.1073/pnas.90.22.10424.
6
Subclonal components of consensus fitness in an RNA virus clone.
J Virol. 1994 Jul;68(7):4295-301. doi: 10.1128/JVI.68.7.4295-4301.1994.
7
The red queen reigns in the kingdom of RNA viruses.
Proc Natl Acad Sci U S A. 1994 May 24;91(11):4821-4. doi: 10.1073/pnas.91.11.4821.
9
Exponential increases of RNA virus fitness during large population transmissions.
Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5841-4. doi: 10.1073/pnas.92.13.5841.
10
Transovarial transmission of dengue 2 virus by Aedes aegypti in nature.
Am J Trop Med Hyg. 1983 May;32(3):590-4. doi: 10.4269/ajtmh.1983.32.590.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验