Duncan T M, Bulygin V V, Zhou Y, Hutcheon M L, Cross R L
Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210, USA.
Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10964-8. doi: 10.1073/pnas.92.24.10964.
During oxidative and photo-phosphorylation, F0F1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F0F1. Guided by a recent, high-resolution structure for bovine F1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation of the central gamma subunit relative to the three catalytic beta subunits in soluble F1 from Escherichia coli. In the bovine F1 structure, a specific point of contact between the gamma subunit and one of the three catalytic beta subunits includes positioning of the homolog of E. coli gamma-subunit C87 (gamma C87) close to the beta-subunit 380DELSEED386 sequence. A beta D380C mutation allowed us to induce formation of a specific disulfide bond between beta and gamma C87 in soluble E. coli F1. Formation of the crosslink inactivated beta D380C-F1, and reduction restored full activity. Using a dissociation/reassembly approach with crosslinked beta D380C-F1, we incorporated radiolabeled beta subunits into the two noncrosslinked beta-subunit positions of F1. After reduction of the initial nonradioactive beta-gamma crosslink, only exposure to conditions for catalytic turnover results in similar reactivities of unlabeled and radiolabeled beta subunits with gamma C87 upon reoxidation. The results demonstrate that gamma subunit rotates relative to the beta subunits during catalysis.
在氧化磷酸化和光合磷酸化过程中,F0F1 - ATP合酶将质子沿电化学梯度的移动与ATP的合成偶联起来。一个一直存在推测的机制特征是,这种偶联过程需要F0F1内的亚基旋转。在牛F1的最新高分辨率结构[Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621 - 628]的指导下,我们针对来自大肠杆菌的可溶性F1中中央γ亚基相对于三个催化β亚基的旋转开发了一项关键测试。在牛F1结构中,γ亚基与三个催化β亚基之一之间的特定接触点包括大肠杆菌γ亚基C87(γC87)的同源物靠近β亚基380DELSEED386序列的定位。βD380C突变使我们能够在可溶性大肠杆菌F1中诱导β和γC87之间形成特定的二硫键。交联的形成使βD380C - F1失活,还原后恢复全部活性。使用交联的βD380C - F1的解离/重组方法,我们将放射性标记的β亚基掺入F1的两个非交联β亚基位置。在还原初始的非放射性β - γ交联后,只有在催化周转条件下暴露才会导致在重新氧化时未标记和放射性标记的β亚基与γC87具有相似的反应性。结果表明,在催化过程中γ亚基相对于β亚基旋转。