Suppr超能文献

分形时间序列的离散分析方法评估

Evaluation of the dispersional analysis method for fractal time series.

作者信息

Bassingthwaighte J B, Raymond G M

机构信息

Center for Bioengineering, University of Washington, Seattle 98195, USA.

出版信息

Ann Biomed Eng. 1995 Jul-Aug;23(4):491-505. doi: 10.1007/BF02584449.

Abstract

Fractal signals can be characterized by their fractal dimension plus some measure of their variance at a given level of resolution. The Hurst exponent, H, is < 0.5 for rough anticorrelated series, > 0.5 for positively correlated series, and = 0.5 for random, white noise series. Several methods are available: dispersional analysis, Hurst rescaled range analysis, autocorrelation measures, and power special analysis. Short data sets are notoriously difficult to characterize; research to define the limitations of the various methods is incomplete. This numerical study of fractional Brownian noise focuses on determining the limitations of the dispersional analysis method, in particular, assessing the effects of signal length and of added noise on the estimate of the Hurst coefficient, H, (which ranges from 0 to 1 and is 2 - D, where D is the fractal dimension). There are three general conclusions: (i) pure fractal signals of length greater than 256 points give estimates of H that are biased but have standard deviations less than 0.1; (ii) the estimates of H tend to be biased toward H = 0.5 at both high H (> 0.8) and low H (< 0.5), and biases are greater for short time series than for long; and (iii) the addition of Gaussian noise (H = 0.5) degrades the signals: for those with negative correlation (H < 0.5) the degradation is great, the noise has only mild degrading effects on signals with H > 0.6, and the method is particularly robust for signals with high H and long series, where even 100% noise added has only a few percent effect on the estimate of H. Dispersional analysis can be regarded as a strong method for characterizing biological or natural time series, which generally show long-range positive correlation.

摘要

分形信号可以通过其分形维数以及在给定分辨率水平下的某种方差度量来表征。赫斯特指数H,对于粗糙的反相关序列小于0.5,对于正相关序列大于0.5,对于随机白噪声序列等于0.5。有几种方法可用:离散分析、赫斯特重标极差分析、自相关度量和功率谱分析。众所周知,短数据集很难进行表征;确定各种方法局限性的研究并不完整。这项关于分数布朗噪声的数值研究重点在于确定离散分析方法的局限性,特别是评估信号长度和添加噪声对赫斯特系数H估计值的影响(H的范围是0到1,且H = 2 - D,其中D是分形维数)。有三个总体结论:(i)长度大于256个点的纯分形信号给出的H估计值有偏差,但标准差小于0.1;(ii)在高H(> 0.8)和低H(< 0.5)时,H的估计值往往偏向于H = 0.5,并且短时间序列的偏差比长时间序列的更大;(iii)添加高斯噪声(H = 0.5)会使信号退化:对于负相关(H < 0.5)的信号,退化程度很大,噪声对H > 0.6的信号只有轻微的退化影响,并且该方法对于高H和长序列的信号特别稳健,在这种情况下,即使添加100%的噪声对H估计值的影响也只有几个百分点。离散分析可被视为表征生物或自然时间序列的一种有力方法,这些序列通常呈现长程正相关。

相似文献

2
Evaluating rescaled ranged analysis for time series.评估时间序列的重标极差分析。
Ann Biomed Eng. 1994 Jul-Aug;22(4):432-44. doi: 10.1007/BF02368250.
7
Fractal modeling of human isochronous serial interval production.人类等时序列间隔产生的分形建模。
Biol Cybern. 2004 Feb;90(2):105-12. doi: 10.1007/s00422-003-0453-3. Epub 2004 Feb 20.
10
Fractional Gaussian noise, functional MRI and Alzheimer's disease.分数高斯噪声、功能磁共振成像与阿尔茨海默病。
Neuroimage. 2005 Mar;25(1):141-58. doi: 10.1016/j.neuroimage.2004.10.044. Epub 2005 Jan 21.

引用本文的文献

6
Hidden Signals-The History and Methods of Heart Rate Variability.隐藏信号——心率变异性的历史与方法
Front Public Health. 2017 Oct 16;5:265. doi: 10.3389/fpubh.2017.00265. eCollection 2017.

本文引用的文献

2
Lightning and the Heart: Fractal Behavior in Cardiac Function.闪电与心脏:心脏功能中的分形行为
Proc IEEE Inst Electr Electron Eng. 2002 Aug 6;76(6):693-699. doi: 10.1109/5.4458.
4
Reliability of self-affine measurements.自仿射测量的可靠性
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Jan;51(1):131-147. doi: 10.1103/physreve.51.131.
5
Fractal analysis of renal cortical perfusion.肾皮质灌注的分形分析
Invest Radiol. 1994 Jan;29(1):16-23. doi: 10.1097/00004424-199401000-00002.
7
Evaluating rescaled ranged analysis for time series.评估时间序列的重标极差分析。
Ann Biomed Eng. 1994 Jul-Aug;22(4):432-44. doi: 10.1007/BF02368250.
9
Temporal fluctuations in regional myocardial flows.局部心肌血流的时间波动。
Pflugers Arch. 1989 Feb;413(4):336-42. doi: 10.1007/BF00584480.
10
Fractal character of the auditory neural spike train.听觉神经脉冲序列的分形特征。
IEEE Trans Biomed Eng. 1989 Jan;36(1):150-60. doi: 10.1109/10.16460.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验