Suppr超能文献

GAL4/GAL80-dependent nucleosome disruption/deposition on the upstream regions of the yeast GAL1-10 and GAL80 genes.

作者信息

Lohr D, Lopez J

机构信息

Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287-1604, USA.

出版信息

J Biol Chem. 1995 Nov 17;270(46):27671-8. doi: 10.1074/jbc.270.46.27671.

Abstract

Metabolic reactivation (incubating spheroplasts with galactose and casamino acids) causes disruption of nucleosomes from the upstream regions of the yeast GAL1, GAL10, and GAL80 genes. The disruption is specific. It depends on the transcription activator Gal4; it only occurs in galactose-reactivated chromatin from galactose-grown cells; it only affects upstream region, gene-proximal nucleosomes. Due to this specificity and because some of the same regions have shown induction-dependent changes by in vivo analyses, we suggest that the nucleosome-disrupted structure produced by reactivation is the authentic chromatin structure for these regions under conditions of galactose-induced GAL1-10 and GAL80 expression. It is necessary to carry out a spheroplast reactivation treatment in order to observe this disrupted structure in nuclear chromatin because nucleosomes are redeposited onto these regions during the preliminary steps of nuclear isolation (cell harvest/spheroplast preparation) probably in response to the nonphysiological conditions associated with these steps. However, during the same isolation procedures in cells lacking Gal80 protein, there is no nucleosome deposition on these regions, and the in vivo disrupted structure remains present in the nuclear chromatin. Therefore, the nucleosome deposition process that operates in wild-type cells is dependent on Gal80 protein, defining another activity of this negative regulator.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验