Suppr超能文献

Callosal size in children with learning disabilities.

作者信息

Njiokiktjien C, de Sonneville L, Vaal J

机构信息

Department of Pediatrics, Free University Hospital, Amsterdam, The Netherlands.

出版信息

Behav Brain Res. 1994 Oct 20;64(1-2):213-8. doi: 10.1016/0166-4328(94)90133-3.

Abstract

The corpus callosum (CC), the main structure subserving hemispheric collaboration, that is necessary for efficient cognitive functioning, undergoes developmental processes such as axonal retraction and myelination. Callosal growth therefore is vulnerable for adverse events such as perinatal asphyxia, but there are also genetic and epigenetic factors that determine form and thickness. MRI scans of 110 children, either with specific learning disabilities (LD), i.e. dysphasia/dyslexia, or with several degrees of general LD, showed callosa that were highly variable in size. The callosal size corrected for brain size did not vary significantly according to the severity of the LD, although it tended to be smaller in severe LD, i.e. mental retardation. Callosal size varied however, due to the likely presence of genetic influences or of adverse perinatal events. Children with familial dysphasia/dyslexia, had a thicker CC, possibly reflecting a poorly understood neurodevelopmental mechanism that inhibits the establishment of cerebral dominance. LD children (all subgroups together) with perinatal adverse events had a smaller CC than the familial cases, suggesting CC damage. Despite a multitude of developmental factors influencing the final size, this study suggests that total callosal size, supposedly linked to interhemispheric function, may contribute to the pathophysiological mechanisms that give rise to LD.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验