Suppr超能文献

先验知识在使用MEME发现基序中的价值。

The value of prior knowledge in discovering motifs with MEME.

作者信息

Bailey T L, Elkan C

机构信息

Department of Computer Science and Engineering University of California at San Diego, La Jolla 92093-0114, USA.

出版信息

Proc Int Conf Intell Syst Mol Biol. 1995;3:21-9.

PMID:7584439
Abstract

MEME is a tool for discovering motifs in sets of protein or DNA sequences. This paper describes several extensions to MEME which increase its ability to find motifs in a totally unsupervised fashion, but which also allow it to benefit when prior knowledge is available. When no background knowledge is asserted. MEME obtains increased robustness from a method for determining motif widths automatically, and from probabilistic models that allow motifs to be absent in some input sequences. On the other hand, MEME can exploit prior knowledge about a motif being present in all input sequences, about the length of a motif and whether it is a palindrome, and (using Dirichlet mixtures) about expected patterns in individual motif positions. Extensive experiments are reported which support the claim that MEME benefits from, but does not require, background knowledge. The experiments use seven previously studied DNA and protein sequence families and 75 of the protein families documented in the Prosite database of sites and patterns, Release 11.1.

摘要

MEME是一种用于在蛋白质或DNA序列集中发现基序的工具。本文描述了对MEME的几种扩展,这些扩展提高了它以完全无监督方式发现基序的能力,但在有先验知识可用时也能使其受益。当没有断言背景知识时,MEME通过一种自动确定基序宽度的方法以及允许基序在某些输入序列中不存在的概率模型获得更高的鲁棒性。另一方面,MEME可以利用关于所有输入序列中存在的基序、基序长度以及它是否是回文的先验知识,以及(使用狄利克雷混合)关于各个基序位置的预期模式的先验知识。报告了大量实验,这些实验支持了MEME受益于但不依赖背景知识这一说法。实验使用了七个先前研究过的DNA和蛋白质序列家族以及Prosite位点和模式数据库(版本11.1)中记录的75个蛋白质家族。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验