Suppr超能文献

大肠杆菌K-12的转醛醇酶B:其基因talB的克隆及重组菌株中该酶的特性分析

Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains.

作者信息

Sprenger G A, Schörken U, Sprenger G, Sahm H

机构信息

Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Jülich, Germany.

出版信息

J Bacteriol. 1995 Oct;177(20):5930-6. doi: 10.1128/jb.177.20.5930-5936.1995.

Abstract

A previously recognized open reading frame (T. Yura, H. Mori, H. Nagai, T. Nagata, A. Ishihama, N. Fujita, K. Isono, K. Mizobuchi, and A. Nakata, Nucleic Acids Res. 20:3305-3308) from the 0.2-min region of the Escherichia coli K-12 chromosome is shown to encode a functional transaldolase activity. After cloning of the gene onto high-copy-number vectors, transaldolase B (D-sedoheptulose-7-phosphate:D-glyceraldehyde-3-phosphate dihydroxyacetone transferase; EC 2.2.1.2) was overexpressed up to 12.7 U mg of protein-1 compared with less than 0.1 U mg of protein-1 in wild-type homogenates. The enzyme was purified from recombinant E. coli K-12 cells by successive ammonium sulfate precipitations (45 to 80% and subsequently 55 to 70%) and two anion-exchange chromatography steps (Q-Sepharose FF, Fractogel EMD-DEAE tentacle column; yield, 130 mg of protein from 12 g of cell wet weight) and afforded an apparently homogeneous protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit size of 35,000 +/- 1,000 Da. As the enzyme had a molecular mass of 70,000 Da by gel filtration, transaldolase B is likely to form a homodimer. N-terminal amino acid sequencing of the protein verified its identity with the product of the cloned gene talB. The specific activity of the purified enzyme determined at 30 degrees C with the substrates fructose-6-phosphate (donor of C3 compound) and erythrose-4-phosphate (acceptor) at an optimal pH (50 mM glycylglycine [pH 8.5]) was 60 U mg-1.Km values for the substrates fructose-6-phosphate and erythrose-4-phosphate were determined at 1,200 and 90 microM, respectively. Kinetic constants for the other two physiological reactants, D,L-glyceraldehyde 3-phosphate (Km, 38 microM; relative activity [V(rel)], 8%) and sedoheptulose-7-phosphate (K(m), 285 microM; V(rel), 5%) were also determined. Fructose acted as a C(3) donor at a high apparent K(m) (>/=M) and with a V(rel) of 12%. The enzyme was inhibited by Tris-HCl, phosphate, or sugars with the L configuration at C(2) (L-glyceraldehyde, D-arabinose-5-phosphate).

摘要

来自大肠杆菌K-12染色体0.2分钟区域的一个先前已识别的开放阅读框(T. 尤拉、H. 森、H. 永井、T. 永田、A. 石滨、N. 藤田、K. 矶野、K. 水渊和A. 中田,《核酸研究》20:3305 - 3308)被证明编码一种功能性转醛醇酶活性。将该基因克隆到高拷贝数载体上后,转醛醇酶B(D-景天庚酮糖-7-磷酸:D-甘油醛-3-磷酸二羟基丙酮转移酶;EC 2.2.1.2)的表达量高达12.7 U mg蛋白质-1,而野生型匀浆中的表达量低于0.1 U mg蛋白质-1。通过连续的硫酸铵沉淀(45%至80%,随后是55%至70%)和两步阴离子交换色谱法(Q-琼脂糖FF、Fractogel EMD-DEAE触手柱;产量为12 g细胞湿重得到130 mg蛋白质)从重组大肠杆菌K-12细胞中纯化该酶,在十二烷基硫酸钠-聚丙烯酰胺凝胶电泳上得到一条明显均一的蛋白带,亚基大小为35,000 ± 1,000 Da。由于通过凝胶过滤该酶的分子量为70,000 Da,转醛醇酶B可能形成同源二聚体。该蛋白质的N端氨基酸测序证实了其与克隆基因talB产物的一致性。在30℃下,以果糖-6-磷酸(C3化合物供体)和赤藓糖-4-磷酸(受体)为底物,在最佳pH(50 mM甘氨酰甘氨酸[pH 8.5])下测定纯化酶的比活性为60 U mg-1。果糖-6-磷酸和赤藓糖-4-磷酸底物的Km值分别测定为1200和90 μM。还测定了另外两种生理反应物D,L-甘油醛3-磷酸(Km,38 μM;相对活性[V(rel)],8%)和景天庚酮糖-7-磷酸(K(m),285 μM;V(rel),5%)的动力学常数。果糖在高表观Km(≥M)下作为C(3)供体,相对活性为12%。该酶受到Tris-HCl、磷酸盐或C(2)位具有L构型的糖(L-甘油醛、D-阿拉伯糖-5-磷酸)的抑制。

相似文献

2
Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains.
Eur J Biochem. 1995 Jun 1;230(2):525-32. doi: 10.1111/j.1432-1033.1995.0525h.x.
3
Transaldolase of Methanocaldococcus jannaschii.
Archaea. 2004 Oct;1(4):255-62. doi: 10.1155/2004/608428.
5
The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase.
J Biol Chem. 2020 Feb 14;295(7):1867-1878. doi: 10.1074/jbc.RA119.011239. Epub 2019 Dec 22.
7
Galactofuranose biosynthesis in Escherichia coli K-12: identification and cloning of UDP-galactopyranose mutase.
J Bacteriol. 1996 Feb;178(4):1047-52. doi: 10.1128/jb.178.4.1047-1052.1996.
9
Trehalose-6-phosphate hydrolase of Escherichia coli.
J Bacteriol. 1994 Sep;176(18):5654-64. doi: 10.1128/jb.176.18.5654-5664.1994.
10
Novel mode of inhibition by D-tagatose 6-phosphate through a Heyns rearrangement in the active site of transaldolase B variants.
Acta Crystallogr D Struct Biol. 2016 Apr;72(Pt 4):467-76. doi: 10.1107/S2059798316001170. Epub 2016 Mar 24.

引用本文的文献

1
Characterization of the enzyme kinetics of EMP and HMP pathway in : reference for modeling metabolic networks.
Front Bioeng Biotechnol. 2023 Nov 28;11:1296880. doi: 10.3389/fbioe.2023.1296880. eCollection 2023.
2
Characterization of an Entner-Doudoroff pathway-activated Escherichia coli.
Biotechnol Biofuels Bioprod. 2022 Nov 9;15(1):120. doi: 10.1186/s13068-022-02219-6.
3
Increasing the Thermodynamic Driving Force of the Phosphofructokinase Reaction in .
Appl Environ Microbiol. 2022 Nov 22;88(22):e0125822. doi: 10.1128/aem.01258-22. Epub 2022 Oct 26.
5
Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism.
ISRN Biochem. 2013 Feb 18;2013:645983. doi: 10.1155/2013/645983. eCollection 2013.
6
Succinate Overproduction: A Case Study of Computational Strain Design Using a Comprehensive Escherichia coli Kinetic Model.
Front Bioeng Biotechnol. 2015 Jan 5;2:76. doi: 10.3389/fbioe.2014.00076. eCollection 2014.
7
The transaldolase, a novel allergen of Fusarium proliferatum, demonstrates IgE cross-reactivity with its human analogue.
PLoS One. 2014 Jul 30;9(7):e103488. doi: 10.1371/journal.pone.0103488. eCollection 2014.
8
Analysis of Chinese hamster ovary cell metabolism through a combined computational and experimental approach.
Cytotechnology. 2014 Dec;66(6):945-66. doi: 10.1007/s10616-013-9648-1. Epub 2013 Nov 29.

本文引用的文献

1
Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis.
Science. 1995 Jan 13;267(5195):240-3. doi: 10.1126/science.267.5195.240.
2
Purification and properties of yeast transaldolase.
J Biol Chem. 1955 Feb;212(2):811-25.
3
Formation and utilization of octulose-8-phosphate by transaldolase and transketolase.
Arch Biochem Biophys. 1957 Jan;66(1):241-3. doi: 10.1016/0003-9861(57)90555-6.
4
Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12.
J Bacteriol. 1993 Sep;175(17):5375-83. doi: 10.1128/jb.175.17.5375-5383.1993.
5
Prediction of protein secondary structure at better than 70% accuracy.
J Mol Biol. 1993 Jul 20;232(2):584-99. doi: 10.1006/jmbi.1993.1413.
7
Nucleotide sequence of the Escherichia coli K-12 transketolase (tkt) gene.
Biochim Biophys Acta. 1993 Nov 16;1216(2):307-10. doi: 10.1016/0167-4781(93)90161-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验