Suppr超能文献

A review of the evidence that ultraviolet irradiation is a risk factor in cataractogenesis.

作者信息

Hightower K R

机构信息

Eye Research Institute, Oakland University, Rochester, MI, USA.

出版信息

Doc Ophthalmol. 1994;88(3-4):205-20. doi: 10.1007/BF01203675.

Abstract

There are two approaches to the question of whether solar radiation contributes to human cataract. The first, epidemiological studies, investigates correlations between man's environmental UV dose and cataract frequency. The second, animal models, investigates the effects of varying UV strengths and spectra on lens opacification in vivo or in vitro. While the latter approach typically provides for direct evidence, the data must still be extrapolated to human lenses. Results of physiological studies suggest that UV photons interact with proteins of the epithelial cell membranes, in particular tryptophan residues, transport ATPases and cytoskeletal proteins. One hypothesis is that damage to ion pumps and channels accumulates over the years as repair processes incompletely restore membrane function. Peroxidative damage is likely in view of the formation of UV-induced lipid peroxides in the lens epithelial membranes. Loss of homeostatic control of ions, particularly Ca++, leads to crystallin disorder in small regions of the underlying fiber cells. In our diabetic cataract studies, intracellular Ca++ electrodes detected large shifts in intracellular Ca++ before bulk-lens changes were apparent. Similar occurrences likely characterize UV cataract. Our lab is one of few studying lens physiology and how it is altered following transient exposures to UV-B and UV-A, both of which pass through the cornea. Some changes include: loss of epithelial cell GSH; elevated Ca++; loss of membrane voltage; impaired transport of Na+; increased permeability to ions and water; inhibition of critical enzymes; and a decrease in the rate of membrane synthesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验