Suppr超能文献

Forces and factors that contribute to the structural stability of membrane proteins.

作者信息

Haltia T, Freire E

机构信息

Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Biochim Biophys Acta. 1995 Jul 17;1241(2):295-322. doi: 10.1016/0304-4157(94)00161-6.

Abstract

While a considerable amount of literature deals with the structural energetics of water-soluble proteins, relatively little is known about the forces that determine the stability of membrane proteins. Similarly, only a few membrane protein structures are known at atomic resolution, although new structures have recently been described. In this article, we review the current knowledge about the structural features of membrane proteins. We then proceed to summarize the existing literature regarding the thermal stability of bacteriorhodopsin, cytochrome-c oxidase, the band 3 protein, Photosystem II and porins. We conclude that a fundamental difference between soluble and membrane proteins is the high thermal stability of intrabilayer secondary structure elements in membrane proteins. This property manifests itself as incomplete unfolding, and is reflected in the observed low enthalpies of denaturation of most membrane proteins. By contrast, the extramembranous parts of membrane proteins may behave much like soluble proteins. A brief general account of thermodynamics factors that contribute to the stability of water soluble and membrane proteins is presented.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验