Massillon D, Bollen M, De Wulf H, Overloop K, Vanstapel F, Van Hecke P, Stalmans W
Afdeling Biochemie, Biomedische Fakulteit Geneeskunde, Katholieke Universiteit Leuven, Belgium.
J Biol Chem. 1995 Aug 18;270(33):19351-6. doi: 10.1074/jbc.270.33.19351.
In search for a nonmetabolized, superior glucose analogue to study the mechanism of glucose-induced glycogen synthesis, we have tested 2-deoxy-2-fluoro-alpha-D-glucopyranosyl fluoride, which inhibits muscle phosphorylase beta 10-fold better than dose glucose (Street, I.P., Armstrong, C.R., and Withers, S.G. (1986) Biochemistry 25, 6021-6027). In a gel-filtered liver extract, 0.6 mM analogue and 10 mM glucose equally accelerated the inactivation of phosphorylase and shortened the latency before the activation of glycogen synthase. The analogue was not measurably defluorinated or phosphorylated by intact hepatocytes, as monitored by 19F NMR. When added to isolated hepatocytes, 10 mM analogue inactivated phosphorylase more extensively than did 50 mM glucose, but unlike glucose, it did not result in the activation of glycogen synthase. Therefore, the binding of glucose to phosphorylase alpha can account for the inactivation of phosphorylase, but the metabolism of glucose (probably to Glc-6-P) appears to be required to achieve activation of glycogen synthase. The livers of overnight-fasted, anesthetized mice contained appreciable amounts of both phosphorylase alpha and glycogen synthase alpha, without net glycogen accumulation. Likewise, hepatocytes isolated from fasted rats and incubated with 10 mM glucose contained 41% of phosphorylase and 32% of glycogen synthase in the alpha form, and these values remained stable for 1 h, while glycogen accumulated at only 22% of the rate expected from the glycogen synthase activity. The addition of 10 mM analogue decreased phosphorylase alpha to 10% without significant change in glycogen synthase alpha (38%), but with a 4-fold increased rate of glycogen accumulation. These findings imply that synthase alpha is fully active in the liver of the fasted animal and that the absence of net glycogen synthesis is due to continuous glycogenolysis by phosphorylase alpha.
为了寻找一种非代谢性的、更优的葡萄糖类似物来研究葡萄糖诱导糖原合成的机制,我们测试了2-脱氧-2-氟-α-D-吡喃葡萄糖基氟化物,它抑制肌肉磷酸化酶β的能力比葡萄糖强10倍(斯特里特,I.P.,阿姆斯特朗,C.R.,和威瑟斯,S.G.(1986年)《生物化学》25卷,6021 - 6027页)。在凝胶过滤的肝提取物中,0.6 mM的类似物和10 mM的葡萄糖同样能加速磷酸化酶的失活,并缩短糖原合酶激活前的延迟时间。通过19F NMR监测发现,完整的肝细胞对该类似物没有明显的脱氟或磷酸化作用。当添加到分离的肝细胞中时,10 mM的类似物比50 mM的葡萄糖更能广泛地使磷酸化酶失活,但与葡萄糖不同的是,它不会导致糖原合酶的激活。因此,葡萄糖与磷酸化酶α的结合可以解释磷酸化酶的失活,但葡萄糖的代谢(可能生成葡糖-6-磷酸)似乎是激活糖原合酶所必需的。过夜禁食、麻醉小鼠的肝脏中含有相当数量的磷酸化酶α和糖原合酶α,但没有净糖原积累。同样,从禁食大鼠分离的肝细胞与10 mM葡萄糖一起孵育时,41%的磷酸化酶和32%的糖原合酶呈α形式,这些值在1小时内保持稳定,而糖原积累速率仅为糖原合酶活性预期速率的22%。添加10 mM类似物可使磷酸化酶α降至10%,糖原合酶α无显著变化(38%),但糖原积累速率增加了4倍。这些发现表明,合酶α在禁食动物的肝脏中是完全有活性的,净糖原合成的缺乏是由于磷酸化酶α持续进行糖原分解所致。