Barrett R K, Takahashi J S
NSF Center for Biological Timing, Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
J Neurosci. 1995 Aug;15(8):5681-92. doi: 10.1523/JNEUROSCI.15-08-05681.1995.
We have used an in vitro model system of the circadian clock, dispersed chick pineal cells, to examine the effects of temperature on the circadian clock of a homeotherm. This preparation enabled us to isolate a circadian clock from in vivo homeostatic temperature regulation and expose cells to both constant temperatures and abrupt temperature changes. By manipulating the temperature of the pineal cells, we have demonstrated that (1) the circadian clock compensates its period for temperature changes over the range of 34-40 degrees C; Q10 = 0.83, a value within the range of Q10 values measured for poikilothermic circadian clocks; (2) temperature pulses (42 degrees C, 6 hr duration) shift the phase (advance and delay) of the circadian rhythm in a phase-dependent manner; and (3) a temperature cycle (18 hr at 37 degrees C, 6 hr at 42 degrees C) will entrain the circadian clock in vitro. This is the first demonstration of temperature entrainment of the circadian clock of a homeotherm in vitro. In addition we have found that temperature directly influences the synthesis and release of melatonin, the primary hormonal product of the pineal gland. The biosynthesis of melatonin is strongly temperature dependent with a Q10 > 11 when melatonin release is measured at ambient temperatures between 31 degrees C and 40 degrees C. In contrast, 6 hr 42 degrees C temperatures pulses acutely inhibit melatonin release in a manner similar to that seen previously with light pulses. These results demonstrate that a circadian clock from a homeothermic vertebrate is temperature compensated, yet temperature cycles can entrain the circadian melatonin rhythm. Thus, the chick pineal circadian oscillator has retained all the fundamental properties of circadian rhythms.
我们使用了一种昼夜节律钟的体外模型系统——分散的鸡松果体细胞,来研究温度对恒温动物昼夜节律钟的影响。这种制备方法使我们能够将昼夜节律钟从体内的体温调节中分离出来,并使细胞暴露于恒定温度和温度骤变的环境中。通过控制松果体细胞的温度,我们证明了:(1)昼夜节律钟在34-40摄氏度范围内会针对温度变化补偿其周期;Q10 = 0.83,该值处于变温动物昼夜节律钟所测得的Q10值范围内;(2)温度脉冲(42摄氏度,持续6小时)以相位依赖的方式改变昼夜节律的相位(提前和延迟);(3)温度循环(37摄氏度下18小时,42摄氏度下6小时)将在体外使昼夜节律钟产生 entrainment。这是首次在体外证明恒温动物的昼夜节律钟存在温度 entrainment。此外,我们还发现温度直接影响松果体主要激素产物褪黑素的合成和释放。当在31摄氏度至40摄氏度的环境温度下测量褪黑素释放时,褪黑素的生物合成强烈依赖温度,Q10 > 11。相比之下,6小时42摄氏度的温度脉冲会以类似于先前光脉冲的方式急性抑制褪黑素释放。这些结果表明,恒温脊椎动物的昼夜节律钟具有温度补偿功能,但温度循环可以使昼夜褪黑素节律产生 entrainment。因此,鸡松果体昼夜振荡器保留了昼夜节律的所有基本特性。