Suppr超能文献

雏鸡松果体细胞昼夜节律时钟的温度补偿和温度夹带

Temperature compensation and temperature entrainment of the chick pineal cell circadian clock.

作者信息

Barrett R K, Takahashi J S

机构信息

NSF Center for Biological Timing, Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

J Neurosci. 1995 Aug;15(8):5681-92. doi: 10.1523/JNEUROSCI.15-08-05681.1995.

Abstract

We have used an in vitro model system of the circadian clock, dispersed chick pineal cells, to examine the effects of temperature on the circadian clock of a homeotherm. This preparation enabled us to isolate a circadian clock from in vivo homeostatic temperature regulation and expose cells to both constant temperatures and abrupt temperature changes. By manipulating the temperature of the pineal cells, we have demonstrated that (1) the circadian clock compensates its period for temperature changes over the range of 34-40 degrees C; Q10 = 0.83, a value within the range of Q10 values measured for poikilothermic circadian clocks; (2) temperature pulses (42 degrees C, 6 hr duration) shift the phase (advance and delay) of the circadian rhythm in a phase-dependent manner; and (3) a temperature cycle (18 hr at 37 degrees C, 6 hr at 42 degrees C) will entrain the circadian clock in vitro. This is the first demonstration of temperature entrainment of the circadian clock of a homeotherm in vitro. In addition we have found that temperature directly influences the synthesis and release of melatonin, the primary hormonal product of the pineal gland. The biosynthesis of melatonin is strongly temperature dependent with a Q10 > 11 when melatonin release is measured at ambient temperatures between 31 degrees C and 40 degrees C. In contrast, 6 hr 42 degrees C temperatures pulses acutely inhibit melatonin release in a manner similar to that seen previously with light pulses. These results demonstrate that a circadian clock from a homeothermic vertebrate is temperature compensated, yet temperature cycles can entrain the circadian melatonin rhythm. Thus, the chick pineal circadian oscillator has retained all the fundamental properties of circadian rhythms.

摘要

我们使用了一种昼夜节律钟的体外模型系统——分散的鸡松果体细胞,来研究温度对恒温动物昼夜节律钟的影响。这种制备方法使我们能够将昼夜节律钟从体内的体温调节中分离出来,并使细胞暴露于恒定温度和温度骤变的环境中。通过控制松果体细胞的温度,我们证明了:(1)昼夜节律钟在34-40摄氏度范围内会针对温度变化补偿其周期;Q10 = 0.83,该值处于变温动物昼夜节律钟所测得的Q10值范围内;(2)温度脉冲(42摄氏度,持续6小时)以相位依赖的方式改变昼夜节律的相位(提前和延迟);(3)温度循环(37摄氏度下18小时,42摄氏度下6小时)将在体外使昼夜节律钟产生 entrainment。这是首次在体外证明恒温动物的昼夜节律钟存在温度 entrainment。此外,我们还发现温度直接影响松果体主要激素产物褪黑素的合成和释放。当在31摄氏度至40摄氏度的环境温度下测量褪黑素释放时,褪黑素的生物合成强烈依赖温度,Q10 > 11。相比之下,6小时42摄氏度的温度脉冲会以类似于先前光脉冲的方式急性抑制褪黑素释放。这些结果表明,恒温脊椎动物的昼夜节律钟具有温度补偿功能,但温度循环可以使昼夜褪黑素节律产生 entrainment。因此,鸡松果体昼夜振荡器保留了昼夜节律的所有基本特性。

相似文献

1
Temperature compensation and temperature entrainment of the chick pineal cell circadian clock.
J Neurosci. 1995 Aug;15(8):5681-92. doi: 10.1523/JNEUROSCI.15-08-05681.1995.
3
What does changing the temperature do to the melatonin rhythm in cultured chick pineal cells?
Am J Physiol. 1994 Jan;266(1 Pt 2):R50-8. doi: 10.1152/ajpregu.1994.266.1.R50.
5
Temperature-compensated circadian clock in the pineal of Anolis.
Proc Natl Acad Sci U S A. 1983 Oct;80(19):6119-21. doi: 10.1073/pnas.80.19.6119.
7
Multiple circadian oscillators in the photosensitive pike pineal gland: a study using organ and cell culture.
J Pineal Res. 1994 Mar;16(2):77-84. doi: 10.1111/j.1600-079x.1994.tb00086.x.
10
Lability of circadian pacemaker amplitude in chick pineal cells: a temperature-dependent process.
J Biol Rhythms. 1997 Aug;12(4):309-18. doi: 10.1177/074873049701200403.

引用本文的文献

1
The diverse roles of the circadian clock in cancer.
Nat Cancer. 2025 May 26. doi: 10.1038/s43018-025-00981-8.
2
Effect of temperature cycles on the sleep-like state in Hydra vulgaris.
Zoological Lett. 2025 Jan 28;11(1):2. doi: 10.1186/s40851-025-00248-1.
3
Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2412327121. doi: 10.1073/pnas.2412327121. Epub 2024 Dec 13.
4
The Anti-Elixir Triad: Non-Synced Circadian Rhythm, Gut Dysbiosis, and Telomeric Damage.
Med Princ Pract. 2025;34(3):212-225. doi: 10.1159/000542557. Epub 2024 Nov 13.
5
Circadian clocks in health and disease: Dissecting the roles of the biological pacemaker in cancer.
F1000Res. 2023 May 16;12:116. doi: 10.12688/f1000research.128716.2. eCollection 2023.
6
Nutritional compensation of the circadian clock is a conserved process influenced by gene expression regulation and mRNA stability.
PLoS Biol. 2023 Jan 5;21(1):e3001961. doi: 10.1371/journal.pbio.3001961. eCollection 2023 Jan.
7
Incubation Temperature and Lighting: Effect on Embryonic Development, Post-Hatch Growth, and Adaptive Response.
Front Physiol. 2022 May 13;13:899977. doi: 10.3389/fphys.2022.899977. eCollection 2022.
8
Circadian clock synchrony and chronotherapy opportunities in cancer treatment.
Semin Cell Dev Biol. 2022 Jun;126:27-36. doi: 10.1016/j.semcdb.2021.07.017. Epub 2021 Aug 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验