Shapiro J A
Department of Biochemistry and Molecular, Biology University of Chicago, IL 60637, USA.
Bioessays. 1995 Jul;17(7):597-607. doi: 10.1002/bies.950170706.
Bacteria do many things as organized populations. We have recently learned much about the molecular basis of intercellular communication among prokaryotes. Colonies display bacterial capacities for multicellular coordination which can be useful in nature where bacteria predominantly grow as films, chains, mats and colonies. E. coli colonies are organized into differentiated non-clonal populations and undergo complex morphogenesis. Multicellularity regulates many aspects of bacterial physiology, including DNA rearrangement systems. In some bacterial species, colony development involves swarming (active migration of cell groups). Swarm colony development displays precise geometrical controls and periodic phenomena. Motile E. coli cells in semi-solid media form organized patterns due to chemotactic autoaggregation. On poor media, B. subtilis forms branched colonies using group motility and long-range chemical signalling. The significances of bacterial colony patterns thus reside in a deeper understanding of prokaryotic biology and evolution and in experimental systems for studying self-organization and morphogenesis.
细菌作为有组织的群体能做很多事情。我们最近对原核生物间细胞通讯的分子基础有了很多了解。菌落展示了细菌进行多细胞协调的能力,这在自然界中很有用,因为细菌主要以菌膜、菌链、菌垫和菌落的形式生长。大肠杆菌菌落被组织成分化的非克隆群体,并经历复杂的形态发生过程。多细胞性调节细菌生理学的许多方面,包括DNA重排系统。在一些细菌物种中,菌落发育涉及群体游动(细胞群体的主动迁移)。群体菌落发育表现出精确的几何控制和周期性现象。半固体培养基中的运动性大肠杆菌细胞由于趋化性自动聚集而形成有组织的模式。在贫瘠培养基上,枯草芽孢杆菌利用群体运动性和远程化学信号形成分支菌落。因此,细菌菌落模式的意义在于更深入地理解原核生物生物学和进化,以及用于研究自组织和形态发生的实验系统。