Suppr超能文献

反应中心中氨基酸滴定和电子转移Q-AQB→QAQ-B的静电计算。

Electrostatic calculations of amino acid titration and electron transfer, Q-AQB-->QAQ-B, in the reaction center.

作者信息

Beroza P, Fredkin D R, Okamura M Y, Feher G

机构信息

Department of Physics, University of California, San Diego, La Jolla 92093, USA.

出版信息

Biophys J. 1995 Jun;68(6):2233-50. doi: 10.1016/S0006-3495(95)80406-6.

Abstract

The titration of amino acids and the energetics of electron transfer from the primary electron acceptor (QA) to the secondary electron acceptor (QB) in the photosynthetic reaction center of Rhodobacter sphaeroides are calculated using a continuum electrostatic model. Strong electrostatic interactions between titrating sites give rise to complex titration curves. Glu L212 is calculated to have an anomalously broad titration curve, which explains the seemingly contradictory experimental results concerning its pKa. The electrostatic field following electron transfer shifts the average protonation of amino acids near the quinones. The pH dependence of the free energy between Q-AQB and QAQ-B calculated from these shifts is in good agreement with experiment. However, the calculated absolute free energy difference is in severe disagreement (by approximately 230 meV) with the observed experimental value, i.e., electron transfer from Q-A to QB is calculated to be unfavorable. The large stabilization energy of the Q-A state arises from the predominantly positively charged residues in the vicinity of QA in contrast to the predominantly negatively charged residues near QB. The discrepancy between calculated and experimental values for delta G(Q-AQB-->QAQ-B) points to limitations of the continuum electrostatic model. Inclusion of other contributions to the energetics (e.g., protein motion following quinone reduction) that may improve the agreement between theory and experiment are discussed.

摘要

利用连续静电模型计算了球形红细菌光合反应中心中氨基酸的滴定以及从初级电子受体(QA)到次级电子受体(QB)的电子转移能量学。滴定位点之间强烈的静电相互作用产生了复杂的滴定曲线。计算得出谷氨酸L212具有异常宽的滴定曲线,这解释了关于其pKa看似矛盾的实验结果。电子转移后的静电场改变了醌附近氨基酸的平均质子化状态。根据这些变化计算得出的Q-AQB和QAQ-B之间自由能的pH依赖性与实验结果吻合良好。然而,计算得出的绝对自由能差与观察到的实验值存在严重分歧(相差约230毫电子伏特),即计算得出从Q-A到QB的电子转移是不利的。与QB附近主要带负电荷的残基相比,QA附近主要带正电荷的残基导致了Q-A态的大稳定能。计算值与实验值在ΔG(Q-AQB→QAQ-B)上的差异表明了连续静电模型的局限性。讨论了纳入其他能量学贡献(例如醌还原后的蛋白质运动)可能改善理论与实验之间的一致性。

相似文献

引用本文的文献

2
Molecular dynamics simulations in photosynthesis.光合作用中的分子动力学模拟。
Photosynth Res. 2020 May;144(2):273-295. doi: 10.1007/s11120-020-00741-y. Epub 2020 Apr 15.
4
Molecular mechanisms for generating transmembrane proton gradients.产生跨膜质子梯度的分子机制。
Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):892-913. doi: 10.1016/j.bbabio.2013.03.001. Epub 2013 Mar 16.

本文引用的文献

3
Prediction of pH-dependent properties of proteins.蛋白质pH依赖性性质的预测。
J Mol Biol. 1994 May 6;238(3):415-36. doi: 10.1006/jmbi.1994.1301.
6
On the calculation of pKas in proteins.关于蛋白质中pKa值的计算
Proteins. 1993 Mar;15(3):252-65. doi: 10.1002/prot.340150304.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验