Suppr超能文献

骨的粘弹性特性与含水量的关系。

Viscoelastic properties of bone as a function of water content.

作者信息

Sasaki N, Enyo A

机构信息

Division of Biological Sciences, Graduate School of Science Hokkaido University, Sapporo, Japan.

出版信息

J Biomech. 1995 Jul;28(7):809-15. doi: 10.1016/0021-9290(94)00130-v.

Abstract

Stress relaxation of bovine femur was investigated as a function of water content, phi. As found for bone and bone collagen [Sasaki et al. (1993) J. Biomech. 26, 1369-1376], all the relaxation curves measured were described by a linear combination of a Kohlrausch-Williams-Watts (KWW) function and a simple exponential decay (Debye) function: G(t)/Gi = A1 exp[- (t/tau 1)beta] + A2 exp(= t/tau 2), A1 + A2 = 1, 0 < or = beta < or = 1, where Gi is an initial value of the relaxation shear modulus G(t), A1 and A2 are portions of KWW and Debye relaxations, respectively, and tau 1 and tau 2 are relaxation times of respective relaxations. Shear modulus values in the relaxation described by the KWW function (KWW relaxation) depend remarkably on phi while those in Debye relaxation are almost constant for increasing phi. phi dependencies of A1, tau 1 and beta are explained by assuming that the elementary process for the KWW relaxation would be a rearranging process of local disorders in the collagen molecular array. The relaxation rate for the Debye relaxation (= 1/tau 2) decreases linearly with phi. This linear relation between tau 2-1 and phi was well described on the basis of the concept of non-elasticity of a solid by the nuclearion of microcracks at the area of stress concentration.

摘要

研究了牛股骨应力松弛与含水量φ的函数关系。正如在骨骼和骨胶原中所发现的那样[Sasaki等人(1993年),《生物力学杂志》26卷,第1369 - 1376页],所有测量的松弛曲线均由科尔劳施 - 威廉姆斯 - 瓦特(KWW)函数和简单指数衰减(德拜)函数的线性组合来描述:G(t)/Gi = A1 exp[- (t/tau 1)beta] + A2 exp(= t/tau 2),A1 + A2 = 1,0 ≤ beta ≤ 1,其中Gi是松弛剪切模量G(t)的初始值,A1和A2分别是KWW和德拜松弛的部分,tau 1和tau 2是各自松弛的弛豫时间。由KWW函数描述的松弛过程(KWW松弛)中的剪切模量值显著依赖于φ,而德拜松弛中的剪切模量值随φ增加几乎保持不变。通过假设KWW松弛的基本过程是胶原分子阵列中局部无序的重排过程,可以解释A1、tau'1和beta对φ的依赖性。德拜松弛的松弛速率(= 1/tau 2)随φ线性降低。基于应力集中区域微裂纹的核化导致固体非弹性的概念,很好地描述了tau 2 - 1与φ之间的这种线性关系。 (注:原文中“exp(= t/tau 2)”这里的“=”疑似有误,但按要求未做修改直接翻译)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验