Suppr超能文献

突触可塑性中氨基酸神经递质受体的磷酸化

Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity.

作者信息

Raymond L A, Blackstone C D, Huganir R L

机构信息

Dept of Neurology, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205.

出版信息

Trends Neurosci. 1993 Apr;16(4):147-53. doi: 10.1016/0166-2236(93)90123-4.

Abstract

The precise regulation of synaptic efficacy in the mammalian central nervous system is fundamental for learning, memory, motor control and sensory processing, as well as synaptogenesis. Currently, the molecular mechanisms underlying synaptic plasticity involved in these crucial processes are topics of intense investigation. The modulation of neurotransmitter receptors has received considerable attention, since these receptors mediate signal transduction at the postsynaptic membranes of chemical synapses. Over the past several years, evidence has suggested that protein phosphorylation of neurotransmitter receptors is a common mechanism for the regulation of receptor function. In this reaction, protein kinases catalyse the transfer of a highly charged phosphate moiety from ATP to serine, threonine or tyrosine residues of a neurotransmitter receptor, thereby altering the charge and/or conformation of the receptor and regulating its function. Phosphorylation of neurotransmitter receptors is reversible, can occur rapidly, and might result in prolonged changes in receptor function. Thus, this modification might play an important role in both short- and long-term changes in synaptic transmission.

摘要

在哺乳动物中枢神经系统中,突触效能的精确调节对于学习、记忆、运动控制、感觉处理以及突触形成至关重要。目前,参与这些关键过程的突触可塑性背后的分子机制是深入研究的课题。神经递质受体的调节受到了相当多的关注,因为这些受体介导化学突触后膜处的信号转导。在过去几年中,有证据表明神经递质受体的蛋白质磷酸化是调节受体功能的常见机制。在这个反应中,蛋白激酶催化一个带高电荷的磷酸基团从ATP转移到神经递质受体的丝氨酸、苏氨酸或酪氨酸残基上,从而改变受体的电荷和/或构象并调节其功能。神经递质受体的磷酸化是可逆的,能够快速发生,并且可能导致受体功能的长期变化。因此,这种修饰可能在突触传递的短期和长期变化中都发挥重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验