Brugger W, Möcklin W, Heimfeld S, Berenson R J, Mertelsmann R, Kanz L
Albert-Ludwigs University Medical Center, Department of Hematology and Oncology, Freiburg, Germany.
Blood. 1993 May 15;81(10):2579-84.
To provide sufficient numbers of peripheral blood progenitor cells (PBPCs) for repetitive use after high-dose chemotherapy, we investigated the ability of hematopoietic growth factor combinations to expand the number of clonogenic PBPCs ex vivo. Chemotherapy plus granulocyte colony-stimulating factor (G-CSF) mobilized CD34+ cells from 18 patients with metastatic solid tumors or refractory lymphomas were cultured for up to 28 days in a liquid culture system. The effects of interleukin-1 beta (IL-1), IL-3, IL-6, granulocyte-macrophage-CSF (GM-CSF), G-CSF, macrophage-CSF (M-CSF), stem cell factor (SCF), erythropoietin (EPO), leukemia inhibitory factor (LIF), and interferon-gamma, as well as 36 combinations of these factors were tested. A combination of five hematopoietic growth factors, including SCF, EPO, IL-1, IL-3, and IL-6, was identified as the optimal combination of growth factors for both the expansion of total nucleated cells as well as the expansion of clonogenic progenitor cells. Proliferation peaked at days 12 to 14, with a median 190-fold increase (range, 46- to 930-fold) of total clonogenic progenitor cells. Expanded progenitor cells generated myeloid (colony-forming unit-granulocyte-macrophage), erythroid (burst-forming unit-erythroid), as well as multilineage (colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte) colony-forming units. The number of multilineage colonies increased 250-fold (range, 33- to 589-fold) as compared with pre-expansion values. Moreover, the absolute number of early hematopoietic progenitor cells (CD34+/HLA-DR-; CD34+/CD38-), as well as the number of 4-HC-resistant progenitors within expanded cells increased significantly. Interferon-gamma was shown to synergize with the 5-factor combination, whereas the addition of GM-CSF significantly decreased the number of total clonogenic progenitor cells. Large-scale expansion of PB CD34+ cells (starting cell number, 1.5 x 10(6) CD34+ cells) in autologous plasma supplemented with the same 5-factor combination resulted in an equivalent expansion of progenitor cells as compared with the microculture system. In summary, our data indicate that chemotherapy plus G-CSF-mobilized PBPCs from cancer patients can be effectively expanded ex vivo. Moreover, our data suggest the feasibility of large-scale expansion of PBPCs, starting from small numbers of PB CD34+ cells. The number of cells expanded ex vivo might be sufficient for repetitive use after high-dose chemotherapy and might be candidate cells for therapeutic gene transfer.
为了提供足够数量的外周血祖细胞(PBPCs)以便在大剂量化疗后重复使用,我们研究了造血生长因子组合在体外扩增克隆形成性PBPCs数量的能力。将来自18例转移性实体瘤或难治性淋巴瘤患者经化疗加粒细胞集落刺激因子(G-CSF)动员的CD34+细胞在液体培养系统中培养长达28天。测试了白细胞介素-1β(IL-1)、IL-3、IL-6、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、G-CSF、巨噬细胞集落刺激因子(M-CSF)、干细胞因子(SCF)、促红细胞生成素(EPO)、白血病抑制因子(LIF)和干扰素-γ,以及这些因子的36种组合的作用。包括SCF、EPO、IL-1、IL-3和IL-6在内的五种造血生长因子的组合被确定为总核细胞扩增以及克隆形成祖细胞扩增的最佳生长因子组合。增殖在第12至14天达到峰值,克隆形成祖细胞总数中位数增加190倍(范围为46至930倍)。扩增的祖细胞产生髓系(集落形成单位-粒细胞-巨噬细胞)、红系(爆式集落形成单位-红细胞)以及多系(集落形成单位-粒细胞、红细胞、单核细胞、巨核细胞)集落形成单位。与扩增前的值相比,多系集落数量增加了250倍(范围为33至589倍)。此外,早期造血祖细胞(CD34+/HLA-DR-;CD34+/CD38-)的绝对数量以及扩增细胞中对4-羟基环磷酰胺耐药的祖细胞数量显著增加。干扰素-γ与5因子组合协同作用,而添加GM-CSF则显著降低了克隆形成祖细胞总数。在补充相同5因子组合的自体血浆中对PB CD34+细胞进行大规模扩增(起始细胞数为1.5×10⁶个CD34+细胞),与微培养系统相比,祖细胞得到了同等程度的扩增。总之,我们的数据表明癌症患者经化疗加G-CSF动员的PBPCs可在体外有效扩增。此外,我们的数据表明从少量PB CD34+细胞开始大规模扩增PBPCs是可行的。体外扩增的细胞数量可能足以在大剂量化疗后重复使用,并且可能是治疗性基因转移的候选细胞。