Klieber H G, Gradmann D
Pflanzenphysiologisches Institut der Universität, Göttingen, Germany.
J Membr Biol. 1993 Mar;132(3):253-65. doi: 10.1007/BF00235742.
The prime potassium channel from the tonoplast of Chara corallina has been analyzed in terms of an enzymatic kinetic model (Gradmann, Klieber & Hansen 1987, Biophys. J. 53:287) with respect to its selectivity for K+ over Rb+ and to its blockage by Cs+ and by Ca2+. The channel was investigated by patch-clamp techniques over a range of membrane voltages (Vm, referred to an extracytoplasmic electrical potential of zero) from -200 mV to +200 mV under various ionic conditions (0 to 300 mM K+, Rb+, Cs+, Ca2+, and Cl-) on the two sides of isolated patches. The experimental data are apparent steady-state current-voltage relationships under all experimental conditions used and amplitude histograms of the seemingly noisy open-channel currents in the presence of Cs+. The used model for K+ uniport comprises a reaction cycle of one binding site through four states, i.e., (1) K(+)-loaded and charged, facing the cytoplasm, (2) K(+)-loaded and charged facing the vacuole, (3) empty, facing the vacuole, and (4) empty, facing the cytoplasm. Vm enters the system in the form of a symmetric Eyring barrier between state 1 and 2. The numerical results for the individual rate constants are (in 10(6)s-1 for zero voltage and 1 M substrate concentration): k12: 1,410, k21: 3,370, k23: 105,000, k32: 10,600, k34: 194, k43: 270, k41: 5,290, k14: 15,800. For the additional presence of an alternate transportee (here Rb+), the model can be extended in an analog way by another two states ((5) Rb(+)-loaded and charged, facing cytoplasm, and (6) Rb(+)-loaded and charged, facing vacuole) and six more rate constants (k45: 300, k54: 240, k56: 498, k65: 4,510, k63: 4,070, k36: 403). This six-state model with its unique set of fourteen parameters satisfies the complete set of experimental data. If the competing substrate can be bound but not translocated (here Cs+ and Ca2+). k56 and k65 of the model are zero, and the stability constants Kcyt (= k36/k63) and Kvac (= k45/k54) turn out to be Kcyt(Ca2+): 250 M-1 x exp(Vm/(64 mV)), kvac(Ca2+): 10 M-1 x exp(-Vm/(66 mV)), Kcyt(Cs+): 0, and Kvac(Cs+): 46 M-2 x exp(-Vm/(12.25 mV)).(ABSTRACT TRUNCATED AT 400 WORDS)
就其对K⁺相对于Rb⁺的选择性以及被Cs⁺和Ca²⁺阻断的情况而言,已经根据酶动力学模型(Gradmann、Klieber和Hansen,1987年,《生物物理杂志》53:287)对珊瑚轮藻液泡膜上的主要钾通道进行了分析。在分离膜片两侧的各种离子条件(0至300 mM K⁺、Rb⁺、Cs⁺、Ca²⁺和Cl⁻)下,通过膜片钳技术在-200 mV至+200 mV的一系列膜电压(Vm,相对于胞外零电势)范围内对该通道进行了研究。实验数据是所有使用的实验条件下的表观稳态电流-电压关系以及存在Cs⁺时看似有噪声的开放通道电流的幅度直方图。用于K⁺单向运输的模型包括一个结合位点通过四个状态的反应循环,即:(1)K⁺负载且带电,面向细胞质;(2)K⁺负载且带电,面向液泡;(3)空的,面向液泡;(4)空的,面向细胞质。Vm以状态1和2之间对称的艾林势垒形式进入系统。各个速率常数的数值结果(零电压和1 M底物浓度下,单位为10⁶ s⁻¹)为:k12: 1410,k21: 3370,k23: 105000,k32: 10600,k34: 194,k43: 270,k41: 5290,k14: 15800。对于另一种转运体(这里是Rb⁺)的额外存在,该模型可以通过另外两个状态((5)Rb⁺负载且带电,面向细胞质,以及(6)Rb⁺负载且带电,面向液泡)和另外六个速率常数(k45: 300,k54: 240,k56: 498,k65: 4510,k63: 4070,k36: 403)以类似方式扩展。这个具有独特的14个参数集的六状态模型满足了完整的实验数据集。如果竞争底物可以结合但不能转运(这里是Cs⁺和Ca²⁺),模型的k56和k65为零,并且稳定性常数Kcyt(= k36/k63)和Kvac(= k45/k54)结果为Kcyt(Ca²⁺):250 M⁻¹×exp(Vm/(64 mV)),Kvac(Ca²⁺):10 M⁻¹×exp(-Vm/(66 mV)),Kcyt(Cs⁺):0,以及Kvac(Cs⁺):46 M⁻²×exp(-Vm/(12.25 mV))。(摘要截断于400字)