Suppr超能文献

细菌鞭毛马达的极限速度

The Limiting Speed of the Bacterial Flagellar Motor.

作者信息

Nirody Jasmine A, Berry Richard M, Oster George

机构信息

Biophysics Graduate Group, University of California, Berkeley, Berkeley, California.

Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom.

出版信息

Biophys J. 2016 Aug 9;111(3):557-564. doi: 10.1016/j.bpj.2016.07.003.

Abstract

Recent experiments on the bacterial flagellar motor have shown that the structure of this nanomachine, which drives locomotion in a wide range of bacterial species, is more dynamic than previously believed. Specifically, the number of active torque-generating complexes (stators) was shown to vary across applied loads. This finding brings under scrutiny the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. In this study, we propose that, contrary to previous assumptions, the maximum speed of the motor increases as additional stators are recruited. This result arises from our assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence in chimeric motors, as well as with the requirement that a processive motor driving a large load via an elastic linkage must have a high duty ratio.

摘要

最近对细菌鞭毛马达的实验表明,这种驱动多种细菌运动的纳米机器的结构比之前认为的更具动态性。具体而言,已表明主动产生扭矩的复合体(定子)的数量会随施加的负载而变化。这一发现使得那些报告极限(零扭矩)速度与主动定子数量无关的实验证据受到审视。在本研究中,我们提出,与之前的假设相反,随着更多定子被招募,马达的最大速度会增加。这一结果源于我们的假设,即在低负载下,定子在其大部分机械化学循环中会与马达脱离。我们表明,这一假设与嵌合马达当前的实验证据一致,也与通过弹性连接驱动大负载的连续作用马达必须具有高占空比的要求一致。

相似文献

1
The Limiting Speed of the Bacterial Flagellar Motor.
Biophys J. 2016 Aug 9;111(3):557-564. doi: 10.1016/j.bpj.2016.07.003.
2
Load-dependent assembly of the bacterial flagellar motor.
mBio. 2013 Aug 20;4(4):e00551-13. doi: 10.1128/mBio.00551-13.
4
Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the H-Driven Flagellar Motor.
J Bacteriol. 2019 Feb 25;201(6). doi: 10.1128/JB.00727-18. Print 2019 Mar 15.
5
Torque-speed relationship of the flagellar motor with dual-stator systems in .
mBio. 2024 Dec 11;15(12):e0074524. doi: 10.1128/mbio.00745-24. Epub 2024 Oct 30.
6
Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli.
J Mol Biol. 2008 Mar 7;376(5):1251-9. doi: 10.1016/j.jmb.2007.12.023. Epub 2007 Dec 15.
7
Load-dependent adaptation near zero load in the bacterial flagellar motor.
J R Soc Interface. 2019 Oct 31;16(159):20190300. doi: 10.1098/rsif.2019.0300. Epub 2019 Oct 2.
8
Evaluation of the Duty Ratio of the Bacterial Flagellar Motor by Dynamic Load Control.
Biophys J. 2019 May 21;116(10):1952-1959. doi: 10.1016/j.bpj.2019.04.004. Epub 2019 Apr 11.
9
A Chaperone for the Stator Units of a Bacterial Flagellum.
mBio. 2019 Aug 6;10(4):e01732-19. doi: 10.1128/mBio.01732-19.
10
Evolution of the Stator Elements of Rotary Prokaryote Motors.
J Bacteriol. 2020 Jan 15;202(3). doi: 10.1128/JB.00557-19.

引用本文的文献

1
In situ structure of a bacterial flagellar motor at subnanometre resolution reveals adaptations for increased torque.
Nat Microbiol. 2025 Jul;10(7):1723-1740. doi: 10.1038/s41564-025-02012-9. Epub 2025 Jul 1.
2
Structure and Dynamics of the Bacterial Flagellar Motor Complex.
Biomolecules. 2024 Nov 22;14(12):1488. doi: 10.3390/biom14121488.
4
The Bacterial Flagellar Motor: Insights Into Torque Generation, Rotational Switching, and Mechanosensing.
Front Microbiol. 2022 May 30;13:911114. doi: 10.3389/fmicb.2022.911114. eCollection 2022.
5
Modeling Bacterial Flagellar Motor With New Structure Information: Rotational Dynamics of Two Interacting Protein Nano-Rings.
Front Microbiol. 2022 May 25;13:866141. doi: 10.3389/fmicb.2022.866141. eCollection 2022.
6
Structural basis of bacterial flagellar motor rotation and switching.
Trends Microbiol. 2021 Nov;29(11):1024-1033. doi: 10.1016/j.tim.2021.03.009. Epub 2021 Apr 14.
7
A Factor Produced by sp. 32K Accelerated the Motility of sp. ME121.
Biomolecules. 2020 Apr 16;10(4):618. doi: 10.3390/biom10040618.
8
Load-dependent adaptation near zero load in the bacterial flagellar motor.
J R Soc Interface. 2019 Oct 31;16(159):20190300. doi: 10.1098/rsif.2019.0300. Epub 2019 Oct 2.
9
Flagella-Driven Motility of Bacteria.
Biomolecules. 2019 Jul 14;9(7):279. doi: 10.3390/biom9070279.
10
Biophysics at the coffee shop: lessons learned working with George Oster.
Mol Biol Cell. 2019 Jul 22;30(16):1882-1889. doi: 10.1091/mbc.E19-02-0107.

本文引用的文献

1
Mechanics of torque generation in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4381-9. doi: 10.1073/pnas.1501734112. Epub 2015 Jul 27.
2
Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7737-42. doi: 10.1073/pnas.1502991112. Epub 2015 Jun 8.
3
Loose coupling in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4755-60. doi: 10.1073/pnas.1419955112. Epub 2015 Mar 30.
4
Switching dynamics of the bacterial flagellar motor near zero load.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15752-5. doi: 10.1073/pnas.1418548111. Epub 2014 Oct 20.
5
Load-dependent assembly of the bacterial flagellar motor.
mBio. 2013 Aug 20;4(4):e00551-13. doi: 10.1128/mBio.00551-13.
6
Dynamics of mechanosensing in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11839-44. doi: 10.1073/pnas.1305885110. Epub 2013 Jul 1.
7
Mechanism and kinetics of a sodium-driven bacterial flagellar motor.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2544-51. doi: 10.1073/pnas.1301664110. Epub 2013 Jun 20.
8
Responding to chemical gradients: bacterial chemotaxis.
Curr Opin Cell Biol. 2012 Apr;24(2):262-8. doi: 10.1016/j.ceb.2011.11.008. Epub 2011 Dec 9.
9
Architecture of the flagellar rotor.
EMBO J. 2011 Jun 14;30(14):2962-71. doi: 10.1038/emboj.2011.188.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验