Suppr超能文献

Cox回归中的惩罚似然法。

Penalized likelihood in Cox regression.

作者信息

Verweij P J, Van Houwelingen H C

机构信息

Department of Medical Statistics, Leiden University, The Netherlands.

出版信息

Stat Med. 1994;13(23-24):2427-36. doi: 10.1002/sim.4780132307.

Abstract

In a Cox regression model, instability of the estimated regression coefficients can be reduced by maximizing a penalized partial log-likelihood, where a penalty function of the regression coefficients is substracted from the partial log-likelihood. In this paper, we choose the optimal weight of the penalty function by maximizing the predictive value of the model, as measured by the crossvalidated partial log-likelihood. Our methods are illustrated by a study of ovarian cancer survival and by a study of centre-effects in kidney graft survival.

摘要

在Cox回归模型中,通过最大化惩罚偏对数似然可以降低估计回归系数的不稳定性,其中从偏对数似然中减去回归系数的惩罚函数。在本文中,我们通过最大化模型的预测值(以交叉验证的偏对数似然衡量)来选择惩罚函数的最优权重。我们的方法通过一项卵巢癌生存研究和一项肾移植生存中心效应研究进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验