Yoo Seong-Keun, Fitzgerald Conall W, Cho Byuri Angela, Fitzgerald Bailey G, Han Catherine, Koh Elizabeth S, Pandey Abhinav, Sfreddo Hannah, Crowley Fionnuala, Korostin Michelle Rudshteyn, Debnath Neha, Leyfman Yan, Valero Cristina, Lee Mark, Vos Joris L, Lee Andrew Sangho, Zhao Karena, Lam Stanley, Olumuyide Ezekiel, Kuo Fengshen, Wilson Eric A, Hamon Pauline, Hennequin Clotilde, Saffern Miriam, Vuong Lynda, Hakimi A Ari, Brown Brian, Merad Miriam, Gnjatic Sacha, Bhardwaj Nina, Galsky Matthew D, Schadt Eric E, Samstein Robert M, Marron Thomas U, Gönen Mithat, Morris Luc G T, Chowell Diego
Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nat Med. 2025 Mar;31(3):869-880. doi: 10.1038/s41591-024-03398-5. Epub 2025 Jan 6.
Predicting whether a patient with cancer will benefit from immune checkpoint inhibitors (ICIs) without resorting to advanced genomic or immunologic assays is an important clinical need. To address this, we developed and evaluated SCORPIO, a machine learning system that utilizes routine blood tests (complete blood count and comprehensive metabolic profile) alongside clinical characteristics from 9,745 ICI-treated patients across 21 cancer types. SCORPIO was trained on data from 1,628 patients across 17 cancer types from Memorial Sloan Kettering Cancer Center. In two internal test sets comprising 2,511 patients across 19 cancer types, SCORPIO achieved median time-dependent area under the receiver operating characteristic curve (AUC(t)) values of 0.763 and 0.759 for predicting overall survival at 6, 12, 18, 24 and 30 months, outperforming tumor mutational burden (TMB), which showed median AUC(t) values of 0.503 and 0.543. Additionally, SCORPIO demonstrated superior predictive performance for predicting clinical benefit (tumor response or prolonged stability), with AUC values of 0.714 and 0.641, compared to TMB (AUC = 0.546 and 0.573). External validation was performed using 10 global phase 3 trials (4,447 patients across 6 cancer types) and a real-world cohort from the Mount Sinai Health System (1,159 patients across 18 cancer types). In these external cohorts, SCORPIO maintained robust performance in predicting ICI outcomes, surpassing programmed death-ligand 1 immunostaining. These findings underscore SCORPIO's reliability and adaptability, highlighting its potential to predict patient outcomes with ICI therapy across diverse cancer types and healthcare settings.
在不借助先进的基因组或免疫分析的情况下预测癌症患者是否会从免疫检查点抑制剂(ICI)中获益是一项重要的临床需求。为了解决这一问题,我们开发并评估了SCORPIO,这是一个机器学习系统,它利用常规血液检测(全血细胞计数和综合代谢指标)以及来自21种癌症类型的9745例接受ICI治疗患者的临床特征。SCORPIO在纪念斯隆凯特琳癌症中心17种癌症类型的1628例患者的数据上进行了训练。在两个内部测试集中,共有来自19种癌症类型的2511例患者,SCORPIO在预测6、12、18、24和30个月的总生存期时,受试者工作特征曲线下时间依赖性面积(AUC(t))的中位数分别为0.763和0.759,优于肿瘤突变负荷(TMB),TMB的AUC(t)中位数分别为0.503和0.543。此外,在预测临床获益(肿瘤反应或延长的稳定期)方面,SCORPIO表现出卓越的预测性能,AUC值分别为0.714和0.641,而TMB的AUC值为0.546和0.573。使用10项全球3期试验(6种癌症类型的4447例患者)和西奈山医疗系统的一个真实世界队列(18种癌症类型的1159例患者)进行了外部验证。在这些外部队列中,SCORPIO在预测ICI疗效方面保持了稳健的性能,超过了程序性死亡配体1免疫染色。这些发现强调了SCORPIO的可靠性和适应性,突出了其在不同癌症类型和医疗环境中预测ICI治疗患者预后的潜力。
J Immunother Cancer. 2025-2-6
Int J Mol Sci. 2025-6-24
Nat Med. 2025-7-1
Adv Sci (Weinh). 2025-8
Exp Hematol Oncol. 2025-5-22
PLOS Glob Public Health. 2023-6-27
Nat Biotechnol. 2022-4