文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用常规血液检测和临床数据预测癌症患者的检查点抑制剂免疫治疗疗效

Prediction of checkpoint inhibitor immunotherapy efficacy for cancer using routine blood tests and clinical data.

作者信息

Yoo Seong-Keun, Fitzgerald Conall W, Cho Byuri Angela, Fitzgerald Bailey G, Han Catherine, Koh Elizabeth S, Pandey Abhinav, Sfreddo Hannah, Crowley Fionnuala, Korostin Michelle Rudshteyn, Debnath Neha, Leyfman Yan, Valero Cristina, Lee Mark, Vos Joris L, Lee Andrew Sangho, Zhao Karena, Lam Stanley, Olumuyide Ezekiel, Kuo Fengshen, Wilson Eric A, Hamon Pauline, Hennequin Clotilde, Saffern Miriam, Vuong Lynda, Hakimi A Ari, Brown Brian, Merad Miriam, Gnjatic Sacha, Bhardwaj Nina, Galsky Matthew D, Schadt Eric E, Samstein Robert M, Marron Thomas U, Gönen Mithat, Morris Luc G T, Chowell Diego

机构信息

Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Nat Med. 2025 Mar;31(3):869-880. doi: 10.1038/s41591-024-03398-5. Epub 2025 Jan 6.


DOI:10.1038/s41591-024-03398-5
PMID:39762425
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11922749/
Abstract

Predicting whether a patient with cancer will benefit from immune checkpoint inhibitors (ICIs) without resorting to advanced genomic or immunologic assays is an important clinical need. To address this, we developed and evaluated SCORPIO, a machine learning system that utilizes routine blood tests (complete blood count and comprehensive metabolic profile) alongside clinical characteristics from 9,745 ICI-treated patients across 21 cancer types. SCORPIO was trained on data from 1,628 patients across 17 cancer types from Memorial Sloan Kettering Cancer Center. In two internal test sets comprising 2,511 patients across 19 cancer types, SCORPIO achieved median time-dependent area under the receiver operating characteristic curve (AUC(t)) values of 0.763 and 0.759 for predicting overall survival at 6, 12, 18, 24 and 30 months, outperforming tumor mutational burden (TMB), which showed median AUC(t) values of 0.503 and 0.543. Additionally, SCORPIO demonstrated superior predictive performance for predicting clinical benefit (tumor response or prolonged stability), with AUC values of 0.714 and 0.641, compared to TMB (AUC = 0.546 and 0.573). External validation was performed using 10 global phase 3 trials (4,447 patients across 6 cancer types) and a real-world cohort from the Mount Sinai Health System (1,159 patients across 18 cancer types). In these external cohorts, SCORPIO maintained robust performance in predicting ICI outcomes, surpassing programmed death-ligand 1 immunostaining. These findings underscore SCORPIO's reliability and adaptability, highlighting its potential to predict patient outcomes with ICI therapy across diverse cancer types and healthcare settings.

摘要

在不借助先进的基因组或免疫分析的情况下预测癌症患者是否会从免疫检查点抑制剂(ICI)中获益是一项重要的临床需求。为了解决这一问题,我们开发并评估了SCORPIO,这是一个机器学习系统,它利用常规血液检测(全血细胞计数和综合代谢指标)以及来自21种癌症类型的9745例接受ICI治疗患者的临床特征。SCORPIO在纪念斯隆凯特琳癌症中心17种癌症类型的1628例患者的数据上进行了训练。在两个内部测试集中,共有来自19种癌症类型的2511例患者,SCORPIO在预测6、12、18、24和30个月的总生存期时,受试者工作特征曲线下时间依赖性面积(AUC(t))的中位数分别为0.763和0.759,优于肿瘤突变负荷(TMB),TMB的AUC(t)中位数分别为0.503和0.543。此外,在预测临床获益(肿瘤反应或延长的稳定期)方面,SCORPIO表现出卓越的预测性能,AUC值分别为0.714和0.641,而TMB的AUC值为0.546和0.573。使用10项全球3期试验(6种癌症类型的4447例患者)和西奈山医疗系统的一个真实世界队列(18种癌症类型的1159例患者)进行了外部验证。在这些外部队列中,SCORPIO在预测ICI疗效方面保持了稳健的性能,超过了程序性死亡配体1免疫染色。这些发现强调了SCORPIO的可靠性和适应性,突出了其在不同癌症类型和医疗环境中预测ICI治疗患者预后的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/b9e04011088c/41591_2024_3398_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/687ea114e5b6/41591_2024_3398_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/3d8da3d96f1b/41591_2024_3398_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/67c86fde0a89/41591_2024_3398_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/9b0248a6a6c2/41591_2024_3398_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/261afebad0e0/41591_2024_3398_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/b9e04011088c/41591_2024_3398_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/687ea114e5b6/41591_2024_3398_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/3d8da3d96f1b/41591_2024_3398_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/67c86fde0a89/41591_2024_3398_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/9b0248a6a6c2/41591_2024_3398_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/261afebad0e0/41591_2024_3398_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e60/11922749/b9e04011088c/41591_2024_3398_Fig6_HTML.jpg

相似文献

[1]
Prediction of checkpoint inhibitor immunotherapy efficacy for cancer using routine blood tests and clinical data.

Nat Med. 2025-3

[2]
Deep Learning Model for Predicting Immunotherapy Response in Advanced Non-Small Cell Lung Cancer.

JAMA Oncol. 2025-2-1

[3]
Robust Prediction of Immune Checkpoint Inhibition Therapy for Non-Small Cell Lung Cancer.

Front Immunol. 2021

[4]
Association of Machine Learning-Based Assessment of Tumor-Infiltrating Lymphocytes on Standard Histologic Images With Outcomes of Immunotherapy in Patients With NSCLC.

JAMA Oncol. 2023-1-1

[5]
Predictive value of ENLIGHT-DP in patients with metastatic lung adenocarcinoma treated with immune checkpoint inhibitors and platinum chemotherapy directly from histopathology slides using inferred transcriptomics.

J Immunother Cancer. 2025-1-11

[6]
Predictive Value of Combining Biomarkers for Clinical Outcomes in Advanced Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Inhibitors.

Clin Lung Cancer. 2021-11

[7]
Association of Survival and Immune-Related Biomarkers With Immunotherapy in Patients With Non-Small Cell Lung Cancer: A Meta-analysis and Individual Patient-Level Analysis.

JAMA Netw Open. 2019-7-3

[8]
Integration of comprehensive genomic profiling, tumor mutational burden, and PD-L1 expression to identify novel biomarkers of immunotherapy in non-small cell lung cancer.

Cancer Med. 2021-4

[9]
Tumor mutational burden and survival on immune checkpoint inhibition in >8000 patients across 24 cancer types.

J Immunother Cancer. 2025-2-6

[10]
EPHA7 mutation as a predictive biomarker for immune checkpoint inhibitors in multiple cancers.

BMC Med. 2021-2-2

引用本文的文献

[1]
Prediction of PD-L1 expression and prognosis of mass-forming intrahepatic cholangiocarcinoma based on preoperative magnetic resonance imaging.

Quant Imaging Med Surg. 2025-8-1

[2]
Development and validation of a machine learning model for predicting vulnerable carotid plaques using routine blood biomarkers and derived indicators: insights into sex-related risk patterns.

Cardiovasc Diabetol. 2025-8-10

[3]
Artificial intelligence and machine learning in the development of vaccines and immunotherapeutics-yesterday, today, and tomorrow.

Front Artif Intell. 2025-7-18

[4]
Characterization of a Potential Therapeutic Anti-Canine PD-1 Single Domain Antibody Produced in Yeast.

Vet Sci. 2025-7-8

[5]
PD-L1 Expression in NSCLC: Clouds in a Bright Sky.

Int J Mol Sci. 2025-6-24

[6]
Prostate cancer immunotherapy-based strategies: an updated review emphasizing immune checkpoint inhibitors.

Front Immunol. 2025-6-18

[7]
AI-enabled drug discovery reaches clinical milestone.

Nat Med. 2025-7-1

[8]
Integrated analysis of shared gene expression signatures and immune microenvironment heterogeneity in type 2 diabetes mellitus and colorectal cancer.

Sci Rep. 2025-7-1

[9]
Cryo-Inactivated Cancer Cells Derived Magnetic Micromotors for Tumor Immunotherapy.

Adv Sci (Weinh). 2025-8

[10]
Immunotherapy in breast cancer: current landscape and emerging trends.

Exp Hematol Oncol. 2025-5-22

本文引用的文献

[1]
LORIS robustly predicts patient outcomes with immune checkpoint blockade therapy using common clinical, pathologic and genomic features.

Nat Cancer. 2024-8

[2]
Advancing oncology drug therapies for sub-Saharan Africa.

PLOS Glob Public Health. 2023-6-27

[3]
Ancestry-driven recalibration of tumor mutational burden and disparate clinical outcomes in response to immune checkpoint inhibitors.

Cancer Cell. 2022-10-10

[4]
Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer.

Nat Cancer. 2022-10

[5]
Deciphering radiological stable disease to immune checkpoint inhibitors.

Ann Oncol. 2022-8

[6]
Pre-treatment serum albumin and mutational burden as biomarkers of response to immune checkpoint blockade.

NPJ Precis Oncol. 2022-4-7

[7]
Outcomes Among Patients With or Without Obesity and With Cancer Following Treatment With Immune Checkpoint Blockade.

JAMA Netw Open. 2022-2-1

[8]
Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma.

J Hepatol. 2022-4

[9]
Multi-omic machine learning predictor of breast cancer therapy response.

Nature. 2022-1

[10]
Improved prediction of immune checkpoint blockade efficacy across multiple cancer types.

Nat Biotechnol. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索