Suppr超能文献

Central control of disynaptic reciprocal inhibition in humans.

作者信息

Crone C, Nielsen J

机构信息

Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.

出版信息

Acta Physiol Scand. 1994 Dec;152(4):351-63. doi: 10.1111/j.1748-1716.1994.tb09817.x.

Abstract

The disynaptic pathway from muscle spindle Ia afferents to motoneurones of the antagonist muscle is one of the best studied pathways in the spinal cord. Early animal studies--mainly in the cat--have provided a detailed knowledge of the pathway itself and of the integration of segmental and supraspinal convergence at the interneuronal level. Although this knowledge was used to formulate hypotheses on the function of the pathway during natural movements, the reduced animal preparation limited the possibilities of testing these ideas. However, such information has more recently been obtained from human subjects by using indirect electrophysiological techniques. In most of these experiments the disynaptic Ia inhibition was demonstrated as a short-latency depression of a monosynaptic test reflex (H-reflex) following a conditioning stimulation of the antagonist nerve. Changes in the size of this depression during voluntary tasks were then taken as evidence of a central regulation of the pathway. It has for example been demonstrated in this way that the brain regulates the Ia inhibitory interneurones in parallel with their corresponding motoneurones during extension-flexion movements, but not during co-contraction of antagonistic muscles. The importance of the central control of the pathway has also been emphasized by the finding of a disordered regulation of its activity in patients with lesions of the brain. This may possibly contribute to the inappropriate co-contraction of antagonistic muscles observed in some of these patients. It seems reasonable to expect that this kind of experiment in the future may contribute significantly to the knowledge of the central control of spinal motor mechanisms.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验