Suppr超能文献

Role of amino acid-induced changes in ion fluxes in the regulation of hepatic protein synthesis.

作者信息

Rivas T, Urcelay E, González-Manchón C, Parrilla R, Ayuso M S

机构信息

Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain.

出版信息

J Cell Physiol. 1995 May;163(2):277-84. doi: 10.1002/jcp.1041630208.

Abstract

Alanine is a powerful stimulator of hepatic protein synthesis whose mechanism of action has not yet been ascertained. The present work aimed to elucidate whether rate changes in ion fluxes accompanying the transport of this amino acid could play a role in the stimulation of protein synthesis. In perfused livers, the utilization of alanine produced a net uptake of K+ of 1.5 mumol/min/liver, a progressively increasing efflux of Ca2+ to reach a maximum of 0.9 mumol/min/liver, and alkalization of the extracellular medium. Inhibition of Na+/K+ exchange by ouabain reversed only the uptake of K+, indicating that this is the main way for the efflux of Na+ cotransported with alanine. In isolated hepatocytes, the uptake of alanine increased the intracellular content of K+ and the cell volume. The following observations suggest that these changes, and not an increased intracellular concentration of Na+, are associated with the stimulation of protein synthesis: 1) Ouabain inhibited the alanine stimulation of L-[3H]-valine incorporation into protein without altering the basal rate of protein labeling; 2) ouabain had no effects on alanine uptake indicating that Na+ influx is not involved in the alanine stimulation of protein synthesis; 3) disruption of Na+ gradient across the plasma membrane by specific ionophores, monensin and gramicidin D, inhibited both basal and alanine-stimulated protein synthesis, but substitution of extracellular Na+ by K+ did not prevent the stimulatory action of alanine. The observation that hypotonic buffer enhanced protein synthesis to the same degree than alanine in liver cells indicates that alanine-induced cell swelling could be sufficient to stimulate protein synthesis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验