Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA.
Acad Radiol. 2012 Aug;19(8):977-85. doi: 10.1016/j.acra.2012.03.026. Epub 2012 May 15.
Quantitative measurement provides essential information about disease progression and treatment response in patients with glioblastoma multiforme (GBM). The goal of this article is to present and validate a software pipeline for semi-automatic GBM segmentation, called AFINITI (Assisted Follow-up in NeuroImaging of Therapeutic Intervention), using clinical data from GBM patients.
Our software adopts the current state-of-the-art tumor segmentation algorithms and combines them into one clinically usable pipeline. Both the advantages of the traditional voxel-based and the deformable shape-based segmentation are embedded into the software pipeline. The former provides an automatic tumor segmentation scheme based on T1- and T2-weighted magnetic resonance (MR) brain data, and the latter refines the segmentation results with minimal manual input.
Twenty-six clinical MR brain images of GBM patients were processed and compared with manual results. The results can be visualized using the embedded graphic user interface.
Validation results using clinical GBM data showed high correlation between the AFINITI results and manual annotation. Compared to the voxel-wise segmentation, AFINITI yielded more accurate results in segmenting the enhanced GBM from multimodality MR imaging data. The proposed pipeline could be used as additional information to interpret MR brain images in neuroradiology.
在多形性胶质母细胞瘤(GBM)患者中,定量测量提供了关于疾病进展和治疗反应的重要信息。本文旨在介绍并验证一种名为 AFINITI(治疗干预神经影像学随访辅助)的 GBM 半自动分割软件,该软件使用 GBM 患者的临床数据。
我们的软件采用了当前最先进的肿瘤分割算法,并将其组合成一个临床可用的管道。传统的基于体素和基于变形形状的分割的优点都被嵌入到软件管道中。前者提供了一种基于 T1 和 T2 加权磁共振(MR)脑数据的自动肿瘤分割方案,后者则通过最小的手动输入来细化分割结果。
对 26 例 GBM 患者的临床 MR 脑图像进行了处理,并与手动结果进行了比较。结果可以通过嵌入式图形用户界面进行可视化。
使用临床 GBM 数据进行的验证结果表明,AFINITI 结果与手动标注之间具有高度相关性。与基于体素的分割相比,AFINITI 能够更准确地分割多模态 MR 成像数据中的增强 GBM。该方法可作为神经放射学中解释 MR 脑图像的附加信息。