Mayo K E, Godfrey P A, Suhr S T, Kulik D J, Rahal J O
Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.
Recent Prog Horm Res. 1995;50:35-73. doi: 10.1016/b978-0-12-571150-0.50007-x.
The molecular characterization of GHRH and the GHRH receptor provides a framework for understanding the hypothalamic regulation of pituitary somatotroph function. The signaling events discerned from our investigation of GHRH receptor structure and function form the basis of a model for GHRH action, which is shown in Fig. 20. GHRH interaction with its seven transmembrane domain Gs-coupled receptor on the somatotroph (step 1) leads to the release of growth hormone from secretory granules (step 2), which is likely to involve a G protein-mediated interaction with ion channels, and to a stimulation of intracellular cAMP accumulation (step 3) (Mayo, 1992; Lin et al., 1992; Gaylinn et al., 1993). In several cell types tested, elevated cAMP leads to the phosphorylation and activation of the transcription factor CREB by protein kinase A (Gonzalez and Montminy, 1989; Sheng et al., 1991), and one target gene for CREB action is the pituitary-specific transcription factor Pit-1 or GHF-1 (step 4) (Bodner et al., 1988; Ingraham et al., 1988; McCormick et al., 1990). Pit-1 is a prototypic POU domain protein that is required for the appropriate regulation of the growth hormone gene in somatotroph cells, thus providing a pathway by which a GHRH signal can lead to increased growth hormone synthesis in the pituitary (step 5). In addition, Pit-1 is likely to directly regulate the synthesis of the GHRH receptor (step 6), in that the receptor is not expressed in the pituitary of dw/dw mice that lack functional Pit-1 (Lin et al., 1992), and a cotransfected Pit-1 expression construct can activate the GHRH receptor promoter in transiently transfected CV1 cells (Lin et al., 1993). It remains to be determined whether additional direct regulation of the GHRH receptor gene in response to the cAMP signaling pathway occurs (step 7). The inhibitory peptide somatostatin presumably interacts with this same signaling pathway through G protein-mediated suppression of the cAMP pathway (Tallent and Reisine, 1992; Bell and Reisine, 1993). In agreement with the importance of this signaling system for normal growth, a transgene encoding a nonphosphorylatable mutant CREB protein, which blocks the function of the endogenous CREB protein, is able to cause somatotroph hypoplasia and dwarfism in mice when its expression is targeted to pituitary somatotrophs (Struthers et al., 1991). Several steps in the signaling pathway leading to growth hormone secretion are subject to disruption, resulting in growth hormone deficiency.(ABSTRACT TRUNCATED AT 400 WORDS)
生长激素释放激素(GHRH)和GHRH受体的分子特征为理解下丘脑对垂体生长激素细胞功能的调节提供了一个框架。我们对GHRH受体结构和功能的研究中所识别出的信号转导事件构成了GHRH作用模型的基础,如图20所示。GHRH与其在生长激素细胞上的七跨膜结构域Gs偶联受体相互作用(步骤1),导致生长激素从分泌颗粒中释放出来(步骤2),这可能涉及G蛋白介导的与离子通道的相互作用,并刺激细胞内cAMP积累(步骤3)(梅奥,1992;林等人,1992;盖林等人,1993)。在几种测试的细胞类型中,升高的cAMP会导致蛋白激酶A使转录因子CREB磷酸化并激活(冈萨雷斯和蒙特米尼,1989;盛等人,1991),而CREB作用的一个靶基因是垂体特异性转录因子Pit-1或GHF-1(步骤4)(博德纳等人,1988;英格拉姆等人,1988;麦科密克等人,1990)。Pit-1是一种典型的POU结构域蛋白,是生长激素细胞中生长激素基因正常调节所必需的,从而提供了一条途径,通过该途径GHRH信号可导致垂体中生长激素合成增加(步骤5)。此外,Pit-1可能直接调节GHRH受体的合成(步骤6),因为在缺乏功能性Pit-1的dw/dw小鼠的垂体中不表达该受体(林等人,1992),并且共转染的Pit-1表达构建体可在瞬时转染的CV1细胞中激活GHRH受体启动子(林等人,1993)。是否存在对GHRH受体基因响应cAMP信号通路的额外直接调节尚待确定(步骤7)。抑制性肽生长抑素可能通过G蛋白介导的对cAMP途径的抑制与这同一信号通路相互作用(塔伦特和赖辛,1992;贝尔和赖辛,1993)。与该信号系统对正常生长的重要性一致,编码一种不可磷酸化的突变型CREB蛋白的转基因,其阻断内源性CREB蛋白的功能,当其表达靶向垂体生长激素细胞时,能够在小鼠中导致生长激素细胞发育不全和侏儒症(斯特拉瑟斯等人,1991)。导致生长激素分泌的信号通路中的几个步骤会受到破坏,从而导致生长激素缺乏。(摘要截取自400字)