Suppr超能文献

当测量误差与真值相关时:无差异错误分类的惊人影响。

When measurement errors correlate with truth: surprising effects of nondifferential misclassification.

作者信息

Wacholder S

机构信息

Biostatistics Branch, National Cancer Institute, Rockville, MD 20852, USA.

出版信息

Epidemiology. 1995 Mar;6(2):157-61. doi: 10.1097/00001648-199503000-00012.

Abstract

Most of the literature on the effect of nondifferential misclassification and errors in variables either addresses binary exposure variables or discusses continuous variables in the classical error model, where the error is assumed to be uncorrelated with the true value. In both of these situations, an imperfectly measured exposure always attenuates the relation, at least in the univariate setting. Furthermore, measuring a confounder with error independent of the exposure, even while measuring the exposure of interest perfectly, leads to partial control of the confounding. For many variables measured in epidemiology, particularly those based on self-report, however, errors are often correlated with the true value, and these rules may not apply. Epidemiologists need to be wary of deviations from the classical error model, since poor measurement might occasionally explain a positive finding even when the error does not differ by disease status.

摘要

大多数关于无差异错误分类和变量误差影响的文献,要么讨论二元暴露变量,要么在经典误差模型中探讨连续变量,在该模型中,误差被假定与真实值不相关。在这两种情况下,测量不完美的暴露总是会削弱这种关系,至少在单变量情况下是如此。此外,即使完美测量了感兴趣的暴露,但测量与暴露无关的混杂因素时存在误差,会导致对混杂因素的部分控制。然而,对于流行病学中测量的许多变量,尤其是那些基于自我报告的变量,误差往往与真实值相关,这些规则可能并不适用。流行病学家需要警惕与经典误差模型的偏差,因为即使误差不因疾病状态而异,测量不佳偶尔也可能解释一个阳性结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验