Suppr超能文献

蒙特卡罗模拟方法在定量偏倚分析中的应用:教程。

Monte Carlo Simulation Approaches for Quantitative Bias Analysis: A Tutorial.

出版信息

Epidemiol Rev. 2022 Jan 14;43(1):106-117. doi: 10.1093/epirev/mxab012.

Abstract

Quantitative bias analysis can be used to empirically assess how far study estimates are from the truth (i.e., an estimate that is free of bias). These methods can be used to explore the potential impact of confounding bias, selection bias (collider stratification bias), and information bias. Quantitative bias analysis includes methods that can be used to check the robustness of study findings to multiple types of bias and methods that use simulation studies to generate data and understand the hypothetical impact of specific types of bias in a simulated data set. In this article, we review 2 strategies for quantitative bias analysis: 1) traditional probabilistic quantitative bias analysis and 2) quantitative bias analysis with generated data. An important difference between the 2 strategies relates to the type of data (real vs. generated data) used in the analysis. Monte Carlo simulations are used in both approaches, but the simulation process is used for different purposes in each. For both approaches, we outline and describe the steps required to carry out the quantitative bias analysis and also present a bias-analysis tutorial demonstrating how both approaches can be applied in the context of an analysis for selection bias. Our goal is to highlight the utility of quantitative bias analysis for practicing epidemiologists and increase the use of these methods in the epidemiologic literature.

摘要

定量偏倚分析可用于实证评估研究估计值与真实值(即无偏估计值)之间的差距。这些方法可用于探索混杂偏倚、选择偏倚(混杂分层偏倚)和信息偏倚的潜在影响。定量偏倚分析包括可用于检查研究结果对多种偏倚稳健性的方法,以及使用模拟研究生成数据并了解模拟数据集中特定类型偏倚假设影响的方法。本文综述了 2 种定量偏倚分析策略:1)传统概率定量偏倚分析和 2)基于生成数据的定量偏倚分析。这 2 种策略的一个重要区别在于分析中使用的数据类型(真实数据与生成数据)。这两种方法都使用了蒙特卡罗模拟,但在每种方法中,模拟过程的用途都不同。对于这两种方法,我们都概述并描述了进行定量偏倚分析所需的步骤,并提供了一个偏倚分析教程,演示了如何在选择偏倚分析的背景下应用这两种方法。我们的目标是强调定量偏倚分析对实践流行病学的实用性,并增加这些方法在流行病学文献中的应用。

相似文献

10
Using simulation studies to evaluate statistical methods.运用模拟研究评估统计方法。
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.

引用本文的文献

2
Evidence triangulation in health research.健康研究中的证据三角互证法
Eur J Epidemiol. 2025 Mar 27. doi: 10.1007/s10654-024-01194-6.
8
Collider stratification bias II: magnitude of bias.对撞机分层偏差II:偏差大小
Am J Epidemiol. 2025 May 7;194(5):1149-1151. doi: 10.1093/aje/kwae255.

本文引用的文献

1
2
Common misconceptions about validation studies.验证研究的常见误区。
Int J Epidemiol. 2020 Aug 1;49(4):1392-1396. doi: 10.1093/ije/dyaa090.
4
Using simulation studies to evaluate statistical methods.运用模拟研究评估统计方法。
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
6
Target Validity and the Hierarchy of Study Designs.目标有效性与研究设计的层次结构。
Am J Epidemiol. 2019 Feb 1;188(2):438-443. doi: 10.1093/aje/kwy228.
10
Invited Commentary: Selection Bias Without Colliders.特邀评论:无对撞机情况下的选择偏倚
Am J Epidemiol. 2017 Jun 1;185(11):1048-1050. doi: 10.1093/aje/kwx077.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验