Suppr超能文献

植物β-葡聚糖内切水解酶的分子进化

Molecular evolution of plant beta-glucan endohydrolases.

作者信息

Høj P B, Fincher G B

机构信息

Department of Horticulture, Viticulture and Oenology, University of Adelaide, Glen Osmond, South Australia.

出版信息

Plant J. 1995 Mar;7(3):367-79. doi: 10.1046/j.1365-313x.1995.7030367.x.

Abstract

The evolutionary relationships of two classes of plant beta-glucan endohydrolases have been examined by comparison of their substrate specificities, their three-dimensional conformations and the structural features of their corresponding genes. These comparative studies provide compelling evidence that the (1-->3)-beta-glucanases and (1-->3,1-->4)-beta-glucanases from higher plants share a common ancestry and, in all likelihood, that the (1-->3,1-->4)-beta-glucanases diverged from the (1-->3)-beta-glucanases during the appearance of the graminaceous monocotyledons. The evolution of (1-->3,1-->4)-beta-glucanases from (1-->3)-beta-glucanases does not appear to have invoked 'modular' mechanisms of change, such as those caused by exon shuffling or recombination. Instead, the shift in specificity has been acquired through a limited number of point mutations that have resulted in amino acid substitutions along the substrate-binding cleft. This is consistent with current theories that the evolution of new enzymic activity is often achieved through duplication of the gene encoding an existing enzyme which is capable of performing the required chemistry, in this case the hydrolysis of a glycosidic linkage, followed by the mutational alteration and fine-tuning of substrate specificity. The evolution of a new specificity has enabled a dramatic shift in the functional capabilities of the enzymes. (1-->3)-beta-Glucanases that play a major role, inter alia, in the protection of the plant against pathogenic microorganisms through their ability to hydrolyse the (1-->3)-beta-glucans of fungal cell walls, appear to have been recruited to generate (1-->3,1-->4)-beta-glucanases, which quite specifically hydrolyse plant cell wall (1-->3,1-->4)-beta-glucans in the graminaceous monocotyledons during normal wall metabolism. Thus, one class of beta-glucan endohydrolase can degrade beta-glucans in fungal walls, while the other hydrolyses structurally distinct beta-glucans of plant cell walls. Detailed information on the three-dimensional structures of the enzymes and the identification of catalytic amino acids now present opportunities to explore the precise molecular and atomic details of substrate-binding, catalytic mechanisms and the sequence of molecular events that resulted in the evolution of the substrate specificities of the two classes of enzyme.

摘要

通过比较两类植物β-葡聚糖内切水解酶的底物特异性、三维构象及其相应基因的结构特征,研究了它们的进化关系。这些比较研究提供了令人信服的证据,表明高等植物中的(1→3)-β-葡聚糖酶和(1→3,1→4)-β-葡聚糖酶有着共同的祖先,而且很可能(1→3,1→4)-β-葡聚糖酶是在禾本科单子叶植物出现时从(1→3)-β-葡聚糖酶分化而来的。(1→3,1→4)-β-葡聚糖酶从(1→3)-β-葡聚糖酶进化而来的过程似乎并未涉及“模块化”的变化机制,比如由外显子改组或重组所导致的那些机制。相反,特异性的转变是通过有限数量的点突变实现的,这些点突变导致沿着底物结合裂隙出现氨基酸替换。这与当前的理论相符,即新酶活性的进化通常是通过编码现有酶的基因复制来实现的,这种现有酶能够进行所需的化学反应,在这种情况下是糖苷键的水解,随后是底物特异性的突变改变和精细调整。新特异性的进化使得这些酶的功能能力发生了巨大转变。主要通过水解真菌细胞壁的(1→3)-β-葡聚糖来保护植物免受病原微生物侵害的(1→3)-β-葡聚糖酶,似乎已被招募来生成(1→3,1→4)-β-葡聚糖酶,后者在正常细胞壁代谢过程中能非常特异性地水解禾本科单子叶植物细胞壁中的(1→3,1→4)-β-葡聚糖。因此,一类β-葡聚糖内切水解酶能够降解真菌细胞壁中的β-葡聚糖,而另一类则水解植物细胞壁中结构不同的β-葡聚糖。关于这些酶三维结构的详细信息以及催化氨基酸的鉴定,现在为探索底物结合、催化机制以及导致这两类酶底物特异性进化的分子事件顺序的精确分子和原子细节提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验