Suppr超能文献

Immunological approach to investigating membrane cell damages induced by lipoperoxidative stress. Application to far UV-irradiated erythrocytes.

作者信息

Petit E, Divoux D, Chancerelle Y, Kergonou J F, Nouvelot A

机构信息

Laboratoire de Neurosciences, URA 1829-CNRS, Caen.

出版信息

Biol Trace Elem Res. 1995 Jan-Mar;47(1-3):17-27. doi: 10.1007/BF02790097.

Abstract

Oxygen-reactive species are being described as agents responsible for cell degeneration mechanisms resulting from membrane, enzyme, and nuclear alterations. Lipid peroxidation on its own is considered to be one of the consequences of the free radicals attack, and among the different reactive aldehydes that can be formed from the decomposition of lipid peroxides, the most extensively assayed have been malondialdehyde (MDA). However, the different techniques currently used for MDA assay (HPLC, GLC) are barely sensitive enough to follow its production at the cellular level. In order to develop an immunofluorescent technique able to detect cellular damages provoked by lipoperoxidation, polyclonal antibodies against lysozyme modified by MDA treatment have been raised in rabbits. We show that this immunserum recognizes specifically all the MDA-treated proteins tested, but not the intact proteins or the proteins treated by other aldehydes. Moreover, we demonstrate using an ELISA technique that the amount of immunoreactive proteins in MDA-treated membrane erythrocytes is proportional to the concentration of MDA applied, suggesting that this assay may represent a quantitative method of determination of lipoperoxidative alterations. In addition, when coupled to an indirect fluorophore antibody (FITC), the immunserum allows a precise location of these modified proteins within the membranes of erythrocytes in which lipid peroxidation was initiated by far UV irradiation. In summary, the interest of this work is to provide an immunological probe that can precociously detect membrane damages induced by MDA, regardless of the cell type and pro-oxidant (physiological or pathological) conditions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验