Suppr超能文献

Characterization of state transitions in spatially distributed, chaotic, nonlinear, dynamical systems in cerebral cortex.

作者信息

Freeman W J

机构信息

Department of Molecular & Cell Biology, University of California, Berkeley 94720.

出版信息

Integr Physiol Behav Sci. 1994 Jul-Sep;29(3):294-306. doi: 10.1007/BF02691333.

Abstract

The neurons of cerebral cortex are largely autonomous and generate activity that is manifested in trains of microscopic axonal action potentials. The neurons interact by sparse but numerous synaptic connections to generate macroscopic dendritic activity patterns that are observed in electroencephalographic (EEG) waves. The macroscopic patterns are constructed by the populations and they shape the output of cortical neurons in parallel arrays. Sensory cortexes receive sensory information in the form of microscopic action potentials, which induce state transitions in population dynamics. Each state transition transforms sensory information to perceptual meaning. The EEG reflects both kinds of activity. The sensory input is accessed by time ensemble averaging, whereas the perceptual output is found by spatial ensemble averaging. Spatial phase gradients in the EEG are useful for identifying EEG segments in a sequence of state transitions in response to sensory input. The rapidity and flexibility with which they take place give strong reason to postulate that the mechanism for the construction of these sequences of patterns is a dynamical system operating in a chaotic domain.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验