Kaschabek S R, Reineke W
Chemische Mikrobiologie der Bergischen Universität-Gesamthochschule Wuppertal, Germany.
J Bacteriol. 1995 Jan;177(2):320-5. doi: 10.1128/jb.177.2.320-325.1995.
Maleylacetate reductase (EC 1.3.1.32) plays a major role in the degradation of chloroaromatic compounds by channelling maleylacetate and some chlorinated derivatives into the 3-oxoadipate pathway. Several substituted maleylacetates were prepared in situ by alkaline or enzymatic hydrolysis of dienelactones as the precursor. The conversion of these methyl-, chloro-, fluoro-, and bromo-substituted maleylacetates by malelacetate reductase from 3-chlorobenzoate-grown cells of Pseudomonas sp. strain B13 was studied. Two moles of NADH per mole of substrate was consumed for the conversion of maleylacetates which contain a halogen substituent in the 2 position. In contrast, only 1 mol of NADH was necessary to convert 1 mol of substrates without a halogen substituent in the 2 position. The conversion of 2-fluoro-, 2-chloro-, 2,3-dichloro-, 2,5-dichloro-, 2,3,5-trichloro-, 2-bromo-, 2,3-dibromo-, 2,5-dibromo-, 2-bromo-5-chloro-, 2-chloro-3-methyl-, and 2-chloro-5-methylmaleylacetate was accompanied by the elimination of halide from the 2 position and the temporary occurrence of the corresponding dehalogenated maleylacetate as an intermediate consuming the second mole equivalent of NADH. The properties of the halogen substituents influenced the affinity to the enzyme in the following manner. Km values increased with increasing van der Waals radii and with decreasing electronegativity of the halogen substituents (i.e., low steric hindrance and high electronegativity positively influenced the binding). The Km values obtained with 2-methyl-,3-methyl-, and 5-methylmaleylacetate showed that a methyl substituent negatively affected the affinity in the following order: 2 position >/ = 3 position >> 5 position. A reaction mechanism explaining the exclusive elimination of halogen substituents from the 2 position is proposed.
马来酰乙酸还原酶(EC 1.3.1.32)通过将马来酰乙酸和一些氯化衍生物导入3-氧代己二酸途径,在氯代芳香族化合物的降解中起主要作用。通过二烯内酯作为前体的碱性或酶促水解原位制备了几种取代的马来酰乙酸。研究了来自假单胞菌属菌株B13的3-氯苯甲酸生长细胞中的马来酰乙酸还原酶对这些甲基、氯、氟和溴取代的马来酰乙酸的转化。每摩尔含有2位卤素取代基的马来酰乙酸转化消耗两摩尔NADH。相比之下,转化1摩尔在2位没有卤素取代基的底物仅需要1摩尔NADH。2-氟、2-氯、2,3-二氯、2,5-二氯、2,3,5-三氯、2-溴、2,3-二溴、2,5-二溴、2-溴-5-氯、2-氯-3-甲基和2-氯-5-甲基马来酰乙酸的转化伴随着2位卤化物的消除以及相应的脱卤马来酰乙酸作为消耗第二摩尔当量NADH的中间体的暂时出现。卤素取代基的性质以如下方式影响对酶的亲和力。Km值随着卤素取代基范德华半径的增加和电负性的降低而增加(即,低空间位阻和高电负性对结合有积极影响)。用2-甲基、3-甲基和5-甲基马来酰乙酸获得的Km值表明,甲基取代基对亲和力的负面影响顺序如下:2位≥3位>>5位。提出了一种解释仅从2位消除卤素取代基的反应机制。