Suppr超能文献

皮状丝孢酵母中芳香酸的分解代谢

Catabolism of aromatic acids in Trichosporon cutaneum.

作者信息

Anderson J J, Dagley S

出版信息

J Bacteriol. 1980 Feb;141(2):534-43. doi: 10.1128/jb.141.2.534-543.1980.

Abstract

Trichosporon cutaneum readily metabolized protocatechuate, homoprotocatechuate, and gentisate, but lacked ring fission dioxygenases for these compounds. Benzoic, salicylic, 2,3-dihydroxybenzoic, and gentisic acids were converted into beta-ketoadipic acid before entry into the Krebs cycle. Benzoic acid gave rise successively to 4-hydroxybenzoic acid, protocatechuic acid, and hydroxyquinol (1,3,4-trihydroxybenzene), which underwent ring fission to maleylacetic acid. Salicylate and 2,3-dihydroxybenzoate were both initially metabolized to give catechol. 2,3-Dihydroxybenzoate was the substrate for a specific nonoxidative decarboxylase induced by salicylate, although 2,3-dihydroxybenzoate was not a catabolite of salicylate. Gentisate was metabolized to maleylacetic acid and was also readily attacked by salicylate hydroxylase at each stage of a partial purification procedure. Phenylacetic acid was degraded through 3-hydroxyphenylacetic, homogentisic, and maleylacetoacetic acids to acetoacetic and fumaric acids. All the reactions of these catabolic sequences were catalyzed by cell extracts, supplemented with reduced pyridine nucleotide coenzymes where necessary, except for the hydroxylations of benzoic and phenylacetic acids which were demonstrated with cell suspensions and isotopically labeled substrates.

摘要

皮状丝孢酵母能迅速代谢原儿茶酸、高原儿茶酸和龙胆酸,但缺乏针对这些化合物的环裂解双加氧酶。苯甲酸、水杨酸、2,3 -二羟基苯甲酸和龙胆酸在进入三羧酸循环之前被转化为β -酮己二酸。苯甲酸依次生成4 -羟基苯甲酸、原儿茶酸和羟基喹啉(1,3,4 -三羟基苯),后者发生环裂解生成马来酰乙酸。水杨酸酯和2,3 -二羟基苯甲酸酯最初都被代谢生成儿茶酚。2,3 -二羟基苯甲酸酯是由水杨酸诱导产生的一种特异性非氧化脱羧酶的底物,尽管2,3 -二羟基苯甲酸酯不是水杨酸的分解代谢产物。龙胆酸被代谢生成马来酰乙酸,并且在部分纯化过程的每个阶段都很容易被水杨酸羟化酶作用。苯乙酸通过3 -羟基苯乙酸、尿黑酸和马来酰乙酰乙酸降解为乙酰乙酸和富马酸。这些分解代谢序列的所有反应均由细胞提取物催化,必要时补充还原型吡啶核苷酸辅酶,但苯甲酸和苯乙酸的羟基化反应是用细胞悬液和同位素标记底物证明的。

相似文献

1
Catabolism of aromatic acids in Trichosporon cutaneum.
J Bacteriol. 1980 Feb;141(2):534-43. doi: 10.1128/jb.141.2.534-543.1980.
2
Catabolism of tryptophan, anthranilate, and 2,3-dihydroxybenzoate in Trichosporon cutaneum.
J Bacteriol. 1981 Apr;146(1):291-7. doi: 10.1128/jb.146.1.291-297.1981.
3
Catabolism of L-tyrosine in Trichosporon cutaneum.
J Bacteriol. 1979 May;138(2):425-30. doi: 10.1128/jb.138.2.425-430.1979.
4
5
Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp.
Appl Environ Microbiol. 1990 May;56(5):1459-64. doi: 10.1128/aem.56.5.1459-1464.1990.
6
Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol.
Can J Microbiol. 1981 Jun;27(6):636-8. doi: 10.1139/m81-097.
7
A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.
J Bacteriol. 1998 May;180(9):2522-30. doi: 10.1128/JB.180.9.2522-2530.1998.
8
Degradation of 4-hydroxyphenylacetic acid by Trichosporon cutaneum.
J Bacteriol. 1978 Oct;136(1):449-51. doi: 10.1128/jb.136.1.449-451.1978.
10
o-, m- and p-hydroxybenzoate degradative pathways in Rhodococcus erythropolis.
FEMS Microbiol Lett. 1995 Jan 1;125(1):31-5. doi: 10.1111/j.1574-6968.1995.tb07331.x.

引用本文的文献

3
New insights and advances on pyomelanin production: from microbial synthesis to applications.
J Ind Microbiol Biotechnol. 2022 Jul 30;49(4). doi: 10.1093/jimb/kuac013.
4
Discovery and Functional Analysis of a Salicylic Acid Hydroxylase from Aspergillus niger.
Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02701-20.
5
Transcriptome analysis of the dimorphic transition induced by pH change and lipid biosynthesis in Trichosporon cutaneum.
J Ind Microbiol Biotechnol. 2020 Jan;47(1):49-61. doi: 10.1007/s10295-019-02244-9. Epub 2019 Dec 13.
6
Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.
Appl Environ Microbiol. 2019 Nov 14;85(23). doi: 10.1128/AEM.01786-19. Print 2019 Dec 1.
7
Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous.
Microb Cell Fact. 2017 Nov 17;16(1):206. doi: 10.1186/s12934-017-0820-8.
9
Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment-Sources, Risks, Biodegradation.
Water Air Soil Pollut. 2015;226(10):355. doi: 10.1007/s11270-015-2622-0. Epub 2015 Sep 30.
10
Fungal degradation of benzoic acid and related compounds.
World J Microbiol Biotechnol. 1993 Jan;9(1):9-16. doi: 10.1007/BF00656508.

本文引用的文献

1
Simultaneous Adaptation: A New Technique for the Study of Metabolic Pathways.
J Bacteriol. 1947 Sep;54(3):339-48. doi: 10.1128/jb.54.3.339-348.1947.
2
Oxidation of homogentistic acid by cell-free extracts of a vibrio.
J Gen Microbiol. 1962 Jun;28:251-6. doi: 10.1099/00221287-28-2-251.
3
O-pyrocatechiuc acid carboxy-lyase from Aspergillus niger.
Arch Biochem Biophys. 1967 Nov;122(2):466-73. doi: 10.1016/0003-9861(67)90220-2.
4
The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi.
Biochem J. 1968 Aug;108(5):797-828. doi: 10.1042/bj1080797.
5
Purification and properties of catechol 1,2-oxygenase from Trichosporon cutaneum.
Eur J Biochem. 1970 Feb;12(3):427-34. doi: 10.1111/j.1432-1033.1970.tb00869.x.
6
2,3-dihydroxybenzoate 3,4-oxygenase from Pseudomonas fluorescens--oxidation of a substrate analog.
Arch Biochem Biophys. 1970 Jun;138(2):557-65. doi: 10.1016/0003-9861(70)90381-4.
7
The utilization of aromatic compounds by yeasts.
Antonie Van Leeuwenhoek. 1971;37(3):281-7. doi: 10.1007/BF02218497.
8
Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid.
J Bacteriol. 1974 Oct;120(1):159-67. doi: 10.1128/jb.120.1.159-167.1974.
9
Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum.
Eur J Biochem. 1970 Mar 1;13(1):37-44. doi: 10.1111/j.1432-1033.1970.tb00896.x.
10
Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum.
Eur J Biochem. 1973 Jun;35(2):386-400. doi: 10.1111/j.1432-1033.1973.tb02851.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验