Gavrilets S, Hastings A
Division of Environmental Studies, University of California, Davis 95616.
Genetics. 1994 Oct;138(2):519-32. doi: 10.1093/genetics/138.2.519.
We study a two locus model, with additive contributions to the phenotype, to explore the dynamics of different phenotypic characteristics under stabilizing selection and recombination. We demonstrate that the interaction of selection and recombination results in constraints on the mode of phenotypic evolution. Let Vg be the genic variance of the trait and CL be the contribution of linkage disequilibrium to the genotypic variance. We demonstrate that, independent of the initial conditions, the dynamics of the system on the plane (Vg, CL) are typically characterized by a quick approach to a straight line with slow evolution along this line afterward. We analyze how the mode and the rate of phenotypic evolution depend on the strength of selection relative to recombination, on the form of fitness function, and the difference in allelic effect. We argue that if selection is not extremely weak relative to recombination, linkage disequilibrium generated by stabilizing selection influences the dynamics significantly. We demonstrate that under these conditions, which are plausible in nature and certainly the case in artificial stabilizing selection experiments, the model can have a polymorphic equilibrium with positive linkage disequilibrium that is stable simultaneously with monomorphic equilibria.
我们研究了一个双位点模型,该模型对表型具有加性贡献,以探索稳定选择和重组作用下不同表型特征的动态变化。我们证明,选择与重组的相互作用导致了对表型进化模式的限制。设Vg为性状的基因方差,CL为连锁不平衡对基因型方差的贡献。我们证明,与初始条件无关,系统在平面(Vg,CL)上的动态变化通常表现为快速趋近一条直线,随后沿该直线缓慢进化。我们分析了表型进化的模式和速率如何取决于相对于重组的选择强度、适应度函数的形式以及等位基因效应的差异。我们认为,如果选择相对于重组不是极其微弱,稳定选择产生的连锁不平衡会显著影响动态变化。我们证明,在这些在自然中看似合理且在人工稳定选择实验中肯定如此的条件下,该模型可以具有一个具有正连锁不平衡的多态平衡,它与单态平衡同时稳定。