Hsie A W, Recio L
Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston 77555-1010.
Toxicol Ind Health. 1994 May-Jun;10(3):181-9. doi: 10.1177/074823379401000307.
Conjugation and detoxification of mixed function oxidase (MFO)-mediated benzo(a)pyrene [B(a)P] metabolites with glucuronic acid and glutathione (GSH) are major pathways of B(a)P elimination and ultimately excretion in vivo. We have studied the effects of uridine diphosphate alpha-D-glucuronic acid (UDPGA) and GSH, a cofactor for the synthesis of glucuronide and GSH conjugates, respectively, on B(a)P-induced cytotoxicity and mutagenicity in mammalian cells. The S9-mix used in the Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyltransferase (CHO/HPRT) mutational assay was supplemented with either UDPGA, GSH, or GSH plus purified GSH-S-transferases (GSHTs), to study modulation of glucuronide and GSH detoxification mechanisms on B(a)P-induced cytotoxic and mutagenic effects. We found that the addition of UDPGA to S9-mix reduces cytotoxicity induced by either B(a)P or B(a)P 6-OH but not by B(a)P 7,8-diol [B(a)P-diol]. The reduction of B(a)P and B(a)P 6-OH-induced cytotoxicity by glucuronide conjugation is likely due to elimination of cytotoxic phenols and quinones. The addition of GSH to the S9-mix resulted in a reduction of B(a)P- and B(a)P-diol-induced cytotoxicity. GSH plus GSHT reduced B(a)P-induced cytotoxicity and mutagenicity. GSH inhibited the mutagenicity at low concentrations of B(a)P-diol. GSH plus GSHTs inhibited the cytotoxicity and mutagenicity of B(a)P-diol at concentrations not affected by GSH alone. These studies demonstrate that mechanisms of detoxification can affect the biological activity of B(a)P and B(a)P-diol as profoundly as bioactivation by the MFO system. Future research should address studies of mutagenicity modulation by metabolic effectors at both the molecular (DNA sequence) and cellular (quantitative mutagenesis) level.
混合功能氧化酶(MFO)介导的苯并(a)芘[B(a)P]代谢产物与葡萄糖醛酸和谷胱甘肽(GSH)的结合及解毒作用是B(a)P在体内消除并最终排泄的主要途径。我们分别研究了尿苷二磷酸α-D-葡萄糖醛酸(UDPGA)和GSH(分别作为葡萄糖醛酸结合物和GSH结合物合成的辅助因子)对B(a)P诱导的哺乳动物细胞细胞毒性和致突变性的影响。在中国仓鼠卵巢细胞/次黄嘌呤-鸟嘌呤磷酸核糖基转移酶(CHO/HPRT)突变试验中使用的S9混合物,分别添加UDPGA、GSH或GSH加纯化的谷胱甘肽-S-转移酶(GSHTs),以研究葡萄糖醛酸结合物和GSH解毒机制对B(a)P诱导的细胞毒性和致突变性的调节作用。我们发现,向S9混合物中添加UDPGA可降低由B(a)P或B(a)P 6-OH诱导的细胞毒性,但不能降低由B(a)P 7,8-二醇[B(a)P-二醇]诱导的细胞毒性。葡萄糖醛酸结合物降低B(a)P和B(a)P 6-OH诱导的细胞毒性,可能是由于消除了具有细胞毒性的酚类和醌类物质。向S9混合物中添加GSH可降低B(a)P和B(a)P-二醇诱导的细胞毒性。GSH加GSHT可降低B(a)P诱导的细胞毒性和致突变性。在低浓度的B(a)P-二醇时,GSH可抑制其致突变性。在单独的GSH未影响的浓度下,GSH加GSHT可抑制B(a)P-二醇的细胞毒性和致突变性。这些研究表明,解毒机制对B(a)P和B(a)P-二醇生物活性的影响与MFO系统的生物活化作用一样深刻。未来的研究应在分子(DNA序列)和细胞(定量诱变)水平上探讨代谢效应物对致突变性调节的研究。