Suppr超能文献

膜电位的光学探针。

Optical probes of membrane potential.

作者信息

Waggoner A

出版信息

J Membr Biol. 1976 Jun 30;27(4):317-34. doi: 10.1007/BF01869143.

Abstract

There are two basically different mechanisms for the fluorescence and absorption changes of merocyanine, cyanine and oxonol dyes. The permeant dyes (cyanine and oxonol dyes, with delocalized charges) work by a potential-dependent accumulation mechanism. These dyes show large (up to 80%) fluorescence and absorption changes with suspensions of cells, and the changes are complete in seconds. The impermeant dyes (merocyanine dyes, with localized charges) and the permeant dyes also show optical changes that take place in fractions of milliseconds. The rapid optical changes are relatively small (less than or equal to 5 X 10(-3)) but can often be easily detected in experiments with single cells. The rapid, nonaccumulative, optical changes result from membrane-localized dye movements. Cyanine dye-absorption changes occur because of a potential-dependent partition of dye between the membrane and the adjacent aqueous region at the high dye-concentration side of the membrane. Dimers and larger aggregates are formed in the aqueous region during the change. Merocyanine dyes may also work by the same mechanism. DiS-C3-(5) is presently the best dye for measuring membrane potentials of cells, organelles, and vesicles in suspension, but several other cyanines work nearly as well (P.J. Sims, A.S. Waggoner, C.-H. Wang, J.F. Hoffman, Biochemistry 13:3315, 1974). For each system, the ratio of dye to membrane must be varied until the optimum fluorescence change is found. A separate calibration curve must be obtained for each system. For measuring fluorescence and/or absorption changes in single cells, merocyanine 540 and diBA-C4-(5) work well but produce some photodynamic damage with high intensity illumination. A rhodanine merocyanine (WW-375) gives very large absorption changes and does not damage tissue during strong illumination. As the mechanisms of the optical changes are worked out, it should be possible to design and synthesize more sensitive, less toxic dyes that are easier to calibrate. And, as the mechanisms of the optical changes are worked out, these dyes may be useful for studying the structure and dynamics of excitable membranes.

摘要

部花青、花青和草酚酮染料的荧光及吸收变化存在两种基本不同的机制。渗透性染料(花青和草酚酮染料,电荷离域)通过电位依赖性积累机制起作用。这些染料与细胞悬液作用时会呈现出大幅(高达80%)的荧光和吸收变化,且在数秒内即可完成。非渗透性染料(部花青染料,电荷定域)以及渗透性染料也会呈现出在几毫秒内发生的光学变化。这种快速的光学变化相对较小(小于或等于5×10⁻³),但在单细胞实验中通常很容易被检测到。这种快速、非积累性的光学变化是由膜定位的染料移动引起的。花青染料吸收变化的发生是由于在膜高染料浓度一侧,染料在膜与相邻水相区域之间的电位依赖性分配。在此变化过程中,二聚体及更大的聚集体在水相区域形成。部花青染料可能也通过相同机制起作用。目前,DiS-C3-(5)是用于测量悬浮细胞、细胞器和囊泡膜电位的最佳染料,但其他几种花青染料的效果也几乎相同(P.J. 西姆斯、A.S. 瓦戈纳、C.-H. 王、J.F. 霍夫曼,《生物化学》13:3315,1974)。对于每个系统,必须改变染料与膜的比例,直到找到最佳荧光变化。每个系统都必须获得一条单独的校准曲线。对于测量单细胞中的荧光和/或吸收变化,部花青540和diBA-C4-(5)效果良好,但在高强度光照下会产生一些光动力损伤。一种罗丹宁部花青(WW-375)会产生非常大吸收变化,且在强光照射下不会损伤组织。随着光学变化机制的阐明,应该有可能设计和合成更灵敏、毒性更小且更易于校准的染料。而且,随着光学变化机制的阐明,这些染料可能有助于研究可兴奋膜的结构和动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验