Suppr超能文献

A role for protein kinases and phosphatases in the Ca(2+)-induced enhancement of hippocampal AMPA receptor-mediated synaptic responses.

作者信息

Wyllie D J, Nicoll R A

机构信息

Department of Pharmacology, University of California, San Francisco 94143-0450.

出版信息

Neuron. 1994 Sep;13(3):635-43. doi: 10.1016/0896-6273(94)90031-0.

Abstract

We have investigated the effects of inhibitors of protein kinases and protein phosphatases on the NMDA receptor-independent potentiation of evoked and miniature (m) excitatory postsynaptic currents (EPSCs) induced by the entry of Ca2+ via voltage-gated Ca2+ channels in hippocampal CA1 pyramidal neurons. Voltage pulse-induced potentiation was markedly attenuated when evoked in the presence of the protein kinase blockers KN-62, K-252a, or H-7. Bath application of the protein phosphatase inhibitor calyculin A converted the usual transient potentiation of both evoked and spontaneous EPSCs induced by voltage pulses into a more sustained potentiation. Similarly, the introduction of the phosphatase inhibitors microcystin LR or okadaic acid into postsynaptic cells, via patch pipettes, also resulted in a sustained increase in the amplitude of mEPSCs. We propose that entry of Ca2+ into CA1 neurons activates calcium/calmodulin-dependent protein kinase II, which leads to an enhanced responsiveness of synaptic AMPA receptor channels. The enhancement is transient, however, owing to postsynaptic phosphatase activity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验