Suppr超能文献

用于每日呼吸道发病率流行病学研究的未测量颗粒物空气污染数据估计

Estimation of unmeasured particulate air pollution data for an epidemiological study of daily respiratory morbidity.

作者信息

Delfino R J, Becklake M R, Hanley J A, Singh B

机构信息

Department of Epidemiology & Biostatistics, McGill University, Montreal, Quebec, Canada.

出版信息

Environ Res. 1994 Oct;67(1):20-38. doi: 10.1006/enrs.1994.1062.

Abstract

The standard approach to government-mandated aerometric monitoring of airborne particulates across North America is to sample every sixth day year round. However, such data are inadequate for epidemiological studies which aim to examine daily time series relationships of particulate air pollution to respiratory health responses. The aim of the present study was to estimate missing daily particulate matter < or = 2.5 and < or = 10 microns in aerometric diameter (PM2.5 and PM10) and sulfate (SO4(2-) to a degree sufficiently accurate and reliable to allow the use of these estimates, along with the measured data, in an investigation of the relationship of air pollution to respiratory hospital admissions in Montreal during the 1980s. Prediction equations were developed for May through October periods using available daily levels of predictor variables which included: relative humidity-corrected light extinction coefficient (bext) derived from airport visual range sightings, coefficient of haze (COH), SO2, NOx, CO, O3, wind speed, wind direction, barometric pressure (BP), temperature, relative humidity, and total precipitation. Three fourths of the available gravimetric particulate data were used to develop prediction models, while the remaining fourth was used to test the reliability of the model (holdout data). All final models explained over 70% of the variability in the particulate air pollutants and were reliable when tested against the holdout data. The strongest (P < 0.001) and most consistent predictors were bext, COH, and O3 measured on the same day as the particulate, and BP lagged 1 day in the past. Other selected variables were same day NOx, BP, and minimum temperature. Although the present approach to the estimation of missing particulate air pollution may increase the level of exposure misclassification, it does allow for the use of existing network databases in epidemiological studies of daily air pollution health effects even though particulate data is only measured on certain days.

摘要

在北美,政府强制进行的空气中颗粒物的空气监测标准方法是全年每六天采样一次。然而,这些数据对于旨在研究颗粒物空气污染与呼吸健康反应的每日时间序列关系的流行病学研究来说是不够的。本研究的目的是估计缺失的每日空气动力学直径小于或等于2.5微米和小于或等于10微米的颗粒物(PM2.5和PM10)以及硫酸盐(SO4(2-)),其准确度和可靠性要足够高,以便能够在对20世纪80年代蒙特利尔空气污染与呼吸科住院治疗关系的调查中,将这些估计值与实测数据一起使用。利用预测变量的可用每日水平,针对5月至10月期间建立了预测方程,这些预测变量包括:根据机场能见度观测得出的相对湿度校正光消光系数(bext)、霾系数(COH)、SO2、NOx、CO、O3、风速、风向、气压(BP)、温度、相对湿度和总降水量。四分之三的可用重量法颗粒物数据用于建立预测模型,而其余四分之一用于测试模型的可靠性(留存数据)。所有最终模型解释了颗粒物空气污染物中超过70%的变异性,并且在根据留存数据进行测试时是可靠的。最强(P < 0.001)且最一致的预测因子是与颗粒物在同一天测量的bext、COH和O3,以及过去滞后1天的BP。其他选定变量是同一天的NOx、BP和最低温度。尽管目前估计缺失的颗粒物空气污染的方法可能会增加暴露错误分类的程度,但它确实允许在每日空气污染健康影响的流行病学研究中使用现有的网络数据库,即使颗粒物数据仅在某些日子进行测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验