Suppr超能文献

Identification of prosaposin as a neurotrophic factor.

作者信息

O'Brien J S, Carson G S, Seo H C, Hiraiwa M, Kishimoto Y

机构信息

Department of Neurosciences, University of California at San Diego, School of Medicine, La Jolla 92093-0634.

出版信息

Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9593-6. doi: 10.1073/pnas.91.20.9593.

Abstract

Prosaposin was identified as a neurotrophic factor stimulating neurite outgrowth in murine neuroblastoma (NS20Y) cells and choline acetyltransferase (ChAT) activity in human neuroblastoma (SK-N-MC) cells. The four naturally occurring saposins, which are derived by proteolytic processing of prosaposin, were tested for activity. Saposin C was found to be active, whereas saposins A, B, and D were inactive as neurotrophic factors. Dose-response curves demonstrated that nanomolar concentrations of prosaposin and saposin C stimulated neurite outgrowth and increased ChAT activity. Prosaposin and saposin C exerted activity by a mechanism independent of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3. Binding assays utilizing saposin C as a ligand gave two saturable binding constants, a high-affinity (Kd = 19 pM) and a low-affinity (Kd = 1 nM) constant, with 2000 and 15,000 sites per NS20Y cell, respectively. Phosphorylation stimulation experiments demonstrated that brief treatment with prosaposin or saposin C enhanced phosphorylation of a variety of proteins, some of which contained phosphorylated tyrosine(s). Since both cell lines were also stimulated by ciliary neurotrophic factor (CNTF) as well as prosaposin, inhibition was tested by utilizing an anti-gp130 monoclonal antibody, which specifically inhibited CNTF stimulation; this antibody did not inhibit prosaposin or saposin C stimulation. These results indicate that prosaposin and saposin C are neurotrophic factors which initiate signal transduction by binding to a high-affinity receptor that induces protein phosphorylation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2d0/44859/fcf0bd605b35/pnas01142-0407-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验