Suppr超能文献

Interdigitation-fusion: a new method for producing lipid vesicles of high internal volume.

作者信息

Ahl P L, Chen L, Perkins W R, Minchey S R, Boni L T, Taraschi T F, Janoff A S

机构信息

Liposome Company, Inc., Princeton, NJ 08540.

出版信息

Biochim Biophys Acta. 1994 Nov 2;1195(2):237-44. doi: 10.1016/0005-2736(94)90262-3.

Abstract

Previously we demonstrated that fused phospholipid sheets can be formed from small unilamellar vesicles (SUVs) comprised of saturated symmetric chain lipids by exposing them to concentrations of ethanol sufficient to cause bilayer interdigitation (Boni et al. (1993) Biochim. Biophys. Acta 1146, 247-257). Here we report that these sheets spontaneously form large, predominately unilamellar vesicles, when exposed to temperatures above their main phase transition temperature (Tm). These vesicles, termed interdigitation-fusion vesicles (IFVs), have mean diameters between 1 and 6 microns, and, once produced, are stable both above and below the Tm of the lipid. The average captured volume of IFVs is dependent upon lipid chain length, the concentration of ethanol used to induce interdigitation-fusion, and size of the precursor liposomes. IFVs comprised of DPPC and DSPC had averaged captured volumes of 20-25 microliters/mumol lipid. IFVs produced from SUVs containing only DPPG or DPPC/DPPG mixtures had captured volumes equivalent to those made from pure DPPC SUVs indicating that charge can be introduced without consequence to the IFV process. Inclusion of cholesterol in precursor vesicles reduced IFV captured volume in a concentration dependent fashion by interfering with interdigitation. Cholesterol could be incorporated, however, into IFVs through admixture with the already formed phospholipid sheets producing far less comprise to captured volume. IFVs are useful as model systems or drug carriers, since their large internal volume allows for efficient encapsulation particularly with regard to compounds such as iodinated radiocontrast agents which otherwise interfere with vesicularization.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验