Suppr超能文献

3D水凝胶硬度的动态光调谐

Dynamic phototuning of 3D hydrogel stiffness.

作者信息

Stowers Ryan S, Allen Shane C, Suggs Laura J

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712.

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712

出版信息

Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1953-8. doi: 10.1073/pnas.1421897112. Epub 2015 Feb 2.

Abstract

Hydrogels are widely used as in vitro culture models to mimic 3D cellular microenvironments. The stiffness of the extracellular matrix is known to influence cell phenotype, inspiring work toward unraveling the role of stiffness on cell behavior using hydrogels. However, in many biological processes such as embryonic development, wound healing, and tumorigenesis, the microenvironment is highly dynamic, leading to changes in matrix stiffness over a broad range of timescales. To recapitulate dynamic microenvironments, a hydrogel with temporally tunable stiffness is needed. Here, we present a system in which alginate gel stiffness can be temporally modulated by light-triggered release of calcium or a chelator from liposomes. Others have shown softening via photodegradation or stiffening via secondary cross-linking; however, our system is capable of both dynamic stiffening and softening. Dynamic modulation of stiffness can be induced at least 14 d after gelation and can be spatially controlled to produce gradients and patterns. We use this system to investigate the regulation of fibroblast morphology by stiffness in both nondegradable gels and gels with degradable elements. Interestingly, stiffening inhibits fibroblast spreading through either mesenchymal or amoeboid migration modes. We demonstrate this technology can be translated in vivo by using deeply penetrating near-infrared light for transdermal stiffness modulation, enabling external control of gel stiffness. Temporal modulation of hydrogel stiffness is a powerful tool that will enable investigation of the role that dynamic microenvironments play in biological processes both in vitro and in well-controlled in vivo experiments.

摘要

水凝胶作为模拟三维细胞微环境的体外培养模型被广泛应用。已知细胞外基质的硬度会影响细胞表型,这激发了人们利用水凝胶来阐明硬度对细胞行为作用的研究工作。然而,在许多生物过程中,如胚胎发育、伤口愈合和肿瘤发生,微环境是高度动态的,导致基质硬度在广泛的时间尺度上发生变化。为了重现动态微环境,需要一种具有时间可调硬度的水凝胶。在此,我们展示了一种系统,其中藻酸盐凝胶的硬度可以通过光触发脂质体释放钙或螯合剂来进行时间调制。其他人已经展示了通过光降解实现软化或通过二次交联实现硬化;然而,我们的系统能够实现动态硬化和软化。在凝胶化后至少14天可以诱导硬度的动态调制,并且可以进行空间控制以产生梯度和图案。我们使用该系统研究了在不可降解凝胶和具有可降解成分的凝胶中硬度对成纤维细胞形态的调节。有趣的是,硬化通过间充质或阿米巴样迁移模式抑制成纤维细胞的扩散。我们证明了该技术可以通过使用深穿透近红外光进行透皮硬度调制在体内得到应用,从而实现对凝胶硬度的外部控制。水凝胶硬度的时间调制是一种强大的工具,将能够在体外以及在严格控制的体内实验中研究动态微环境在生物过程中所起的作用。

相似文献

1
Dynamic phototuning of 3D hydrogel stiffness.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1953-8. doi: 10.1073/pnas.1421897112. Epub 2015 Feb 2.
2
Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
Acc Chem Res. 2017 Apr 18;50(4):703-713. doi: 10.1021/acs.accounts.6b00543. Epub 2017 Mar 27.
3
Fibroblast morphology on dynamic softening of hydrogels.
Ann Biomed Eng. 2012 May;40(5):1061-72. doi: 10.1007/s10439-011-0483-2. Epub 2011 Dec 8.
4
Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.
Acta Biomater. 2016 May;36:42-54. doi: 10.1016/j.actbio.2016.03.007. Epub 2016 Mar 3.
5
Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
Acta Biomater. 2019 Jan 1;83:83-95. doi: 10.1016/j.actbio.2018.11.011. Epub 2018 Nov 8.
6
Reversible dynamic mechanics of hydrogels for regulation of cellular behavior.
Acta Biomater. 2021 Dec;136:88-98. doi: 10.1016/j.actbio.2021.09.032. Epub 2021 Sep 23.
7
Magnetic nanocomposite hydrogel with tunable stiffness for probing cellular responses to matrix stiffening.
Acta Biomater. 2022 Jan 15;138:112-123. doi: 10.1016/j.actbio.2021.11.001. Epub 2021 Nov 6.
8
Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light.
ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24511-24517. doi: 10.1021/acsami.7b07204. Epub 2017 Jul 14.

引用本文的文献

1
Reproducible extracellular matrices for tumor organoid culture: challenges and opportunities.
J Transl Med. 2025 May 1;23(1):497. doi: 10.1186/s12967-025-06349-x.
2
Engineering multifunctional surface topography to regulate multiple biological responses.
Biomaterials. 2025 Aug;319:123136. doi: 10.1016/j.biomaterials.2025.123136. Epub 2025 Jan 28.
3
Dynamic Hydrogel-Based Strategy for Traumatic Brain Injury Modeling and Therapy.
CNS Neurosci Ther. 2025 Jan;31(1):e70148. doi: 10.1111/cns.70148.
4
Training all-mechanical neural networks for task learning through in situ backpropagation.
Nat Commun. 2024 Dec 9;15(1):10528. doi: 10.1038/s41467-024-54849-z.
5
Egg White Photocrosslinkable Hydrogels as Versatile Bioinks for Advanced Tissue Engineering Applications.
Adv Funct Mater. 2024 Aug 8;34(32). doi: 10.1002/adfm.202315040. Epub 2024 May 13.
7
Biomimetic Hydrogel Strategies for Cancer Therapy.
Gels. 2024 Jun 30;10(7):437. doi: 10.3390/gels10070437.
8
Multifunctional hydrogels with spatially controlled light activation with photocaged oligonucleotides.
Cell Rep Phys Sci. 2024 May 15;5(5). doi: 10.1016/j.xcrp.2024.101922. Epub 2024 Apr 4.
9
Design approaches for 3D cell culture and 3D bioprinting platforms.
Biophys Rev (Melville). 2024 May 16;5(2):021304. doi: 10.1063/5.0188268. eCollection 2024 Jun.
10
Open and closed microfluidics for biosensing.
Mater Today Bio. 2024 Apr 4;26:101048. doi: 10.1016/j.mtbio.2024.101048. eCollection 2024 Jun.

本文引用的文献

1
Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology.
Biomaterials. 2014 Oct;35(32):8927-36. doi: 10.1016/j.biomaterials.2014.06.047. Epub 2014 Jul 19.
2
Local and transient permeation events are associated with local melting of giant liposomes.
Soft Matter. 2014 Jun 28;10(24):4268-74. doi: 10.1039/c4sm00410h.
3
Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods.
Nanotechnology. 2014 Jan 10;25(1):014004. doi: 10.1088/0957-4484/25/1/014004. Epub 2013 Dec 11.
5
The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices.
Biomaterials. 2012 Oct;33(29):6943-51. doi: 10.1016/j.biomaterials.2012.06.057. Epub 2012 Jul 15.
6
Soft fibrin gels promote selection and growth of tumorigenic cells.
Nat Mater. 2012 Jul 1;11(8):734-41. doi: 10.1038/nmat3361.
8
Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro.
Biomaterials. 2011 Feb;32(4):1002-9. doi: 10.1016/j.biomaterials.2010.10.020. Epub 2010 Nov 10.
9
Hydrogels in regenerative medicine.
Adv Mater. 2009 Sep 4;21(32-33):3307-29. doi: 10.1002/adma.200802106.
10
Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression.
J Cell Biol. 2010 Aug 23;190(4):693-706. doi: 10.1083/jcb.201004082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验