Zeilstra-Ryalls J, Fayet O, Georgopoulos C
Department of Cellular, Viral, and Molecular Biology, School of Medicine, University of Utah, Salt Lake City 84132.
J Bacteriol. 1994 Nov;176(21):6558-65. doi: 10.1128/jb.176.21.6558-6565.1994.
The GroES and GroEL proteins of Escherichia coli function together as the GroE molecular chaperone machine to (i) prevent denaturation and aggregation and (ii) assist the folding and oligomerization of other proteins without being part of the final structure. Previous genetic and biochemical analyses have determined that this activity requires interactions of the GroES 7-mer with the GroEL 14-mer. Recently, we have identified a region of the GroES protein that interacts with the GroEL protein. To identify those residues of the GroEL protein that interact with GroES, we have exploited the thermosensitive phenotype of strains bearing mutations at one or the other of two GroEL-interacting residues of GroES. We have isolated, cloned, and sequenced six suppressor mutations in groEL, three independent isolates for each groES mutant. Changes of only three different amino acid substitutions in GroEL protein were found among these six groEL suppressor mutations. On the basis of a number of in vivo analyses of the chaperone activity of various combinations of groES mutant alleles and groEL suppressor alleles, we propose that an amino-proximal region of the GroEL protein which includes amino acid residues 174 and 190 interacts with GroES and that a carboxyl-proximal region which includes residue 375 interacts with substrate proteins.
大肠杆菌的GroES和GroEL蛋白共同作为GroE分子伴侣机器发挥作用,以(i)防止变性和聚集,以及(ii)协助其他蛋白质折叠和寡聚化,而自身并不成为最终结构的一部分。先前的遗传学和生物化学分析已确定,这种活性需要GroES七聚体与GroEL十四聚体相互作用。最近,我们鉴定出了GroES蛋白中与GroEL蛋白相互作用的一个区域。为了鉴定GroEL蛋白中与GroES相互作用的那些残基,我们利用了在GroES的两个与GroEL相互作用的残基之一处发生突变的菌株的温度敏感表型。我们分离、克隆并测序了groEL中的六个抑制突变,每个groES突变体有三个独立分离株。在这六个groEL抑制突变中,仅发现GroEL蛋白中有三种不同氨基酸替换的变化。基于对groES突变等位基因和groEL抑制等位基因的各种组合的伴侣活性进行的大量体内分析,我们提出,GroEL蛋白的一个氨基近端区域(包括氨基酸残基174和190)与GroES相互作用,而一个羧基近端区域(包括残基375)与底物蛋白相互作用。