Suppr超能文献

极端耐辐射细菌耐辐射球菌中的DNA修复

DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans.

作者信息

Minton K W

机构信息

Department of Pathology, F. E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799.

出版信息

Mol Microbiol. 1994 Jul;13(1):9-15. doi: 10.1111/j.1365-2958.1994.tb00397.x.

Abstract

Deinococcus radiodurans and other members of the same genus share extraordinary resistance to the lethal and mutagenic effects of ionizing and u.v. radiation and to many other agents that damage DNA. While it is known that this resistance is due to exceedingly efficient DNA repair, the molecular mechanisms responsible remain poorly understood. Following very high exposures to u.v. irradiation (e.g. 500 J m-2, which is non-lethal to D. radiodurans), this organism carries out extremely efficient excision repair accomplished by two separate nucleotide excision repair pathways acting simultaneously. One pathway requires the uvrA gene and appears similar to the UvrABC excinuclease pathway defined in Escherichia coli. The other excision repair pathway is specific for u.v. dimeric photoproducts, but is not mediated by a pyrimidine dimer DNA glycosylase. Instead, it is initiated by a second bona fide endonuclease that may recognize both pyrimidine dimers and pyrimidine-(6-4)pyrimidones. After high doses of ionizing-radiation (e.g. 1.5 Mrad), D. radiodurans can mend > 100 double-strand breaks (dsb) per chromosome without lethality or mutagenesis. Both dsb mending and survival are recA-dependent, indicating that efficient dsb mending proceeds via homologous recombination. D. radiodurans contains multiple chromosomes per cell, and it is proposed that dsb mending requires extensive recombination amongst these chromosomes, a novel phenomenon in bacteria. Thus, D. radiodurans may serve as an easily accessible model system for the double-strand-break-initiated interchromosomal recombination that occurs in eukaryotic cells during mitosis and meiosis.

摘要

耐辐射球菌及同一属的其他成员对电离辐射和紫外线辐射的致死及诱变作用,以及对许多其他破坏DNA的因子具有非凡的抗性。虽然已知这种抗性归因于极其高效的DNA修复,但负责的分子机制仍知之甚少。在接受非常高剂量的紫外线照射后(例如500 J m-2,这对耐辐射球菌是非致死性的),这种生物体通过两条独立的核苷酸切除修复途径同时作用来进行极其高效的切除修复。一条途径需要uvrA基因,并且似乎类似于在大肠杆菌中定义的UvrABC核酸内切酶途径。另一条切除修复途径对紫外线二聚体光产物具有特异性,但不是由嘧啶二聚体DNA糖基化酶介导的。相反,它由另一种真正的内切核酸酶启动,该酶可能识别嘧啶二聚体和嘧啶 -(6-4)嘧啶酮。在高剂量的电离辐射后(例如1.5 Mrad),耐辐射球菌每条染色体可以修复>100个双链断裂(dsb)而不产生致死性或诱变作用。双链断裂修复和存活都依赖于recA,这表明高效的双链断裂修复是通过同源重组进行的。耐辐射球菌每个细胞含有多条染色体,并且有人提出双链断裂修复需要这些染色体之间进行广泛的重组,这在细菌中是一种新现象。因此,耐辐射球菌可能作为一种易于获取的模型系统,用于研究真核细胞在有丝分裂和减数分裂过程中发生的由双链断裂引发的确间重组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验