Curcio M J, Garfinkel D J
Molecular Genetics Program, Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509.
Genetics. 1994 Apr;136(4):1245-59. doi: 10.1093/genetics/136.4.1245.
Despite the abundance of Ty1 RNA in Saccharomyces cerevisiae, Ty1 retrotransposition is a rare event. To determine whether transpositional dormancy is the result of defective Ty1 elements, functional and defective alleles of the retrotransposon in the yeast genome were quantitated. Genomic Ty1 elements were isolated by gap repair-mediated recombination of pGTy1-H3(delta 475-3944) HIS3, a multicopy plasmid containing a GAL1/Ty1-H3 fusion element lacking most of the gag domain (TYA) and the protease (PR) and integrase (IN) domains. Of 39 independent gap repaired pGTyHIS3 elements isolated, 29 (74%) transposed at high levels following galactose induction. The presence of restriction site polymorphisms within the gap repaired region of the 29 functional pGTyHIS3 elements indicated that they were derived from at least eight different genomic Ty1 elements and one Ty2 element. Of the 10 defective pGTyHIS3 elements, one was a partial gap repair event while the other nine were derived from at least six different genomic Ty1 elements. These results suggest that most genomic Ty1 elements encode functional TYA, PR and IN proteins. To understand how functional Ty1 elements are regulated, we tested the hypothesis that a TYB protein associates preferentially in cis with the RNA template that encodes it, thereby promoting transposition of its own element. A genomic Ty1 mhis3AI element containing either an in-frame insertion in PR or a deletion in TYB transposed at the same rate as a wild-type Ty1mhis3AI allele, indicating that TYB proteins act efficiently in trans. This result suggests in principle that defective genomic Ty1 elements could encode trans-acting repressors of transposition; however, expression of only one of the nine defective pGTy1 isolates had a negative effect on genomic Ty1 mhis3AI element transposition in trans, and this effect was modest. Therefore, the few defective Ty1 elements in the genome are not responsible for transpositional dormancy.
尽管酿酒酵母中Ty1 RNA含量丰富,但Ty1逆转录转座却是罕见事件。为了确定转座休眠是否是有缺陷的Ty1元件导致的结果,对酵母基因组中逆转录转座子的功能等位基因和缺陷等位基因进行了定量分析。通过pGTy1-H3(δ475 - 3944) HIS3的缺口修复介导的重组分离基因组Ty1元件,pGTy1-H3(δ475 - 3944) HIS3是一种多拷贝质粒,含有一个GAL1/Ty1-H3融合元件,该元件缺少大部分gag结构域(TYA)以及蛋白酶(PR)和整合酶(IN)结构域。在分离出的39个独立的经缺口修复的pGTyHIS3元件中,29个(74%)在半乳糖诱导后发生了高水平的转座。29个功能性pGTyHIS3元件的缺口修复区域内存在限制性位点多态性,这表明它们至少源自8个不同的基因组Ty1元件和1个Ty2元件。在10个有缺陷的pGTyHIS3元件中,一个是部分缺口修复事件,而其他9个至少源自6个不同的基因组Ty1元件。这些结果表明,大多数基因组Ty1元件编码功能性的TYA、PR和IN蛋白。为了了解功能性Ty1元件是如何被调控的,我们检验了这样一个假说:TYB蛋白优先以顺式与编码它的RNA模板结合,从而促进其自身元件的转座。一个基因组Ty1 mhis3AI元件,其PR中有一个框内插入或TYB中有一个缺失,其转座速率与野生型Ty1mhis3AI等位基因相同,这表明TYB蛋白能有效地发挥反式作用。这一结果原则上表明,有缺陷的基因组Ty1元件可能编码转座的反式作用阻遏物;然而,9个有缺陷的pGTy1分离株中只有一个的表达对基因组Ty1 mhis3AI元件的反式转座有负面影响,而且这种影响较小。因此,基因组中少数有缺陷的Ty1元件并非转座休眠的原因。