Suppr超能文献

利用社区癌症治疗试验网络进行癌症预防与控制研究:挑战与机遇

Using a community cancer treatment trials network for cancer prevention and control research: challenges and opportunities.

作者信息

Kaluzny A D, Lacey L M, Warnecke R, Morrissey J P, Sondik E, Ford L

机构信息

Cecil G. Sheps Center for Health Services Research, University of North Carolina, Chapel Hill 27599-7590.

出版信息

Cancer Epidemiol Biomarkers Prev. 1994 Apr-May;3(3):261-9.

PMID:8019377
Abstract

Using data collected as part of a larger evaluation of the National Cancer Institute-funded Community Clinical Oncology Program (CCOP), this paper examines the degree to which selected community, interorganizational, and structural characteristics associated with accrual to cancer treatment protocols share equal importance in accruing patients to cancer prevention and control research protocols. Analysis reveals that there are similarities in the factors that prove to be effective for accrual to both types of protocols; however, the two are not isomorphic. CCOP structure was an important predictor of treatment accrual but was not significant for cancer control accrual. Variables measuring the community health resources available to the CCOP were not significant for either treatment or cancer prevention and control research accrual when CCOP structure and interaction with participating research bases were considered. Only CCOP interaction with participating research bases was a significant predictor of both treatment and cancer prevention and control research accrual. The policy implications of these findings are discussed.

摘要

利用作为对美国国立癌症研究所资助的社区临床肿瘤项目(CCOP)进行的一项更大规模评估的一部分所收集的数据,本文研究了与癌症治疗方案入组相关的选定社区、组织间和结构特征在使患者入组癌症预防和控制研究方案方面的重要程度是否相同。分析表明,在证明对两种方案入组有效的因素方面存在相似之处;然而,两者并非同构。CCOP结构是治疗入组的重要预测因素,但对癌症控制入组并不显著。当考虑CCOP结构以及与参与研究基地的互动时,衡量CCOP可利用的社区卫生资源的变量对治疗或癌症预防和控制研究入组均不显著。只有CCOP与参与研究基地的互动是治疗以及癌症预防和控制研究入组的显著预测因素。本文讨论了这些发现的政策含义。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验