Johnson W D, Elston R C, Wickremasinghe A R
Department of Biometry and Genetics, Louisiana State University Medical Center, New Orleans 70112-1393.
J Biopharm Stat. 1994 Mar;4(1):53-64. doi: 10.1080/10543409408835072.
The problem of estimating parameters and testing hypotheses pertaining to categorical data is well known in statistical analysis. Much of the literature on the subject specifies and fits linear models to multinomial data using methods such as weighted least squares. This article describes maximum-likelihood estimation and likelihood ratio tests for ordered categorical response variates with either discrete or continuous underlying probability distributions. Emphasis is on fitting and making inferences about parameters of mixture distributions, especially mixtures of normal distributions. Goodness-of-fit tests are given to check the adequacy of the fitted distributional models.
在统计分析中,估计与分类数据相关的参数以及检验假设的问题是众所周知的。关于该主题的许多文献都使用加权最小二乘法等方法对多项数据指定并拟合线性模型。本文描述了针对具有离散或连续基础概率分布的有序分类响应变量的最大似然估计和似然比检验。重点在于拟合混合分布的参数并对其进行推断,特别是正态分布的混合。给出了拟合优度检验以检查拟合分布模型的充分性。