Suppr超能文献

通过将基础分布拟合到分类数据来检验特定假设。

Testing specific hypotheses by fitting underlying distributions to categorical data.

作者信息

Johnson W D, Elston R C, Wickremasinghe A R

机构信息

Department of Biometry and Genetics, Louisiana State University Medical Center, New Orleans 70112-1393.

出版信息

J Biopharm Stat. 1994 Mar;4(1):53-64. doi: 10.1080/10543409408835072.

Abstract

The problem of estimating parameters and testing hypotheses pertaining to categorical data is well known in statistical analysis. Much of the literature on the subject specifies and fits linear models to multinomial data using methods such as weighted least squares. This article describes maximum-likelihood estimation and likelihood ratio tests for ordered categorical response variates with either discrete or continuous underlying probability distributions. Emphasis is on fitting and making inferences about parameters of mixture distributions, especially mixtures of normal distributions. Goodness-of-fit tests are given to check the adequacy of the fitted distributional models.

摘要

在统计分析中,估计与分类数据相关的参数以及检验假设的问题是众所周知的。关于该主题的许多文献都使用加权最小二乘法等方法对多项数据指定并拟合线性模型。本文描述了针对具有离散或连续基础概率分布的有序分类响应变量的最大似然估计和似然比检验。重点在于拟合混合分布的参数并对其进行推断,特别是正态分布的混合。给出了拟合优度检验以检查拟合分布模型的充分性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验