Zhu H, Paradis F W, Krell P J, Phillips J P, Forsberg C W
Department of Microbiology, University of Guelph, Ontario, Canada.
J Bacteriol. 1994 Jul;176(13):3885-94. doi: 10.1128/jb.176.13.3885-3894.1994.
The xylanase XynC of Fibrobacter succinogenes S85 was recently shown to contain three distinct domains, A, B, and C (F. W. Paradis, H. Zhu, P. J. Krell, J. P. Phillips, and C. W. Forsberg, J. Bacteriol. 175:7666-7672, 1993). Domains A and B each bear an active site capable of hydrolyzing xylan, while domain C has no enzymatic activity. Two truncated proteins, each containing a single catalytic domain, named XynC-A and XynC-B were purified to homogeneity. The catalytic domains A and B had similar pH and temperature parameters of 6.0 and 50 degrees C for maximum hydrolytic activity and extensively degraded birch wood xylan to xylose and xylobiose. The Km and Vmax values, respectively, were 2.0 mg ml-1 and 6.1 U mg-1 for the intact enzyme, 1.83 mg ml-1 and 689 U mg-1 for domain A, and 2.38 mg ml-1 and 91.8 U mg-1 for domain B. Although domain A had a higher specific activity than domain B, domain B exhibited a broader substrate specificity and hydrolyzed rye arabinoxylan to a greater extent than domain A. Furthermore, domain B, but not domain A, was able to release xylose at the initial stage of the hydrolysis. Both catalytic domains cleaved xylotriose, xylotetraose, and xylopentaose but had no activity on xylobiose. Bond cleavage frequencies obtained from hydrolysis of xylo-alditol substrates suggest that while both domains have a strong preference for internal linkages of the xylan backbone, domain B has fewer subsites for substrate binding than domain A and cleaves arabinoxylan more efficiently. Chemical modification with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide methiodide and N-bromosuccinimide inactivated both XynC-A and XynC-B in the absence of xylan, indicating that carboxyl groups and tryptophan residues in the catalytic site of each domain have essential roles.
最近研究表明,琥珀酸纤维杆菌S85的木聚糖酶XynC含有三个不同的结构域,即A、B和C(F. W. Paradis、H. Zhu、P. J. Krell、J. P. Phillips和C. W. Forsberg,《细菌学杂志》175:7666 - 7672,1993年)。结构域A和B各自带有一个能够水解木聚糖的活性位点,而结构域C没有酶活性。两种截短蛋白,每种都包含一个单一的催化结构域,分别命名为XynC - A和XynC - B,被纯化至均一性。催化结构域A和B具有相似的pH和温度参数,最大水解活性时的pH为6.0,温度为50℃,并且能将桦木木聚糖大量降解为木糖和木二糖。完整酶的Km和Vmax值分别为2.0 mg ml-1和6.1 U mg-1,结构域A为1.83 mg ml-1和689 U mg-1,结构域B为2.38 mg ml-1和91.8 U mg-1。虽然结构域A的比活性高于结构域B,但结构域B表现出更广泛的底物特异性,并且比结构域A更能大量水解黑麦阿拉伯木聚糖。此外,在水解初期能够释放木糖的是结构域B,而不是结构域A。两个催化结构域都能切割木三糖、木四糖和木五糖,但对木二糖没有活性。从木糖醇底物水解得到的键切割频率表明,虽然两个结构域都强烈倾向于木聚糖主链的内部连接,但结构域B用于底物结合的亚位点比结构域A少,并且能更有效地切割阿拉伯木聚糖。在没有木聚糖的情况下,用甲基碘化1 - 乙基 - 3 -(3 - 二甲基氨基丙基)碳二亚胺和N - 溴代琥珀酰亚胺进行化学修饰会使XynC - A和XynC - B都失活,这表明每个结构域催化位点中的羧基和色氨酸残基具有重要作用。