Suppr超能文献

观察性研究和实验性研究中的选择偏倚。

Selection bias in observational and experimental studies.

作者信息

Ellenberg J H

机构信息

Biometry and Field Studies Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.

出版信息

Stat Med. 1994;13(5-7):557-67. doi: 10.1002/sim.4780130518.

Abstract

There has been a heightened awareness of the dangers of selection bias over the past two decades. Certainly coverage in statistical and 'statistics for medicine', and epidemiology textbooks have allocated pages to warn investigators and readers of investigations to be aware of its presence. The scientific community has not, however, yet accepted the necessity for critical assessment of the method of sample selection in the planning and execution of studies as a fundamental underpinning of observational and experimental studies. To wit, we are faced with a plethora of research studies receiving funding, being published in peer-reviewed journals and influencing future studies, that may be reporting entirely spurious associations. It is the intent of this paper to present examples of selection bias in a variety of areas which have resulted in misleading or entirely incorrect results. We hope to help make such research scientifically 'politically incorrect' to the degree that the scientific community 'just says no' to such studies, either proposed or reported.

摘要

在过去二十年里,人们对选择偏倚的危害有了更高的认识。当然,统计学以及“医学统计学”和流行病学教材中的内容都用了篇幅来警告研究者和研究报告的读者要留意其存在。然而,科学界尚未接受在研究的规划和实施过程中对样本选择方法进行批判性评估是观察性研究和实验性研究的一项基本支撑。也就是说,我们面临着大量获得资助、在同行评审期刊上发表并影响未来研究的研究,这些研究可能报告的是完全虚假的关联。本文旨在列举各个领域中导致误导性或完全错误结果的选择偏倚实例。我们希望有助于使这类研究在科学上变得“政治不正确”,以至于科学界对这类已提出或已报告的研究“直接说不”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验