Suppr超能文献

特邀评论:对一些流行的荟萃分析方法的批判性审视。

Invited commentary: a critical look at some popular meta-analytic methods.

作者信息

Greenland S

机构信息

Department of Epidemiology, University of California, Los Angeles School of Public Health.

出版信息

Am J Epidemiol. 1994 Aug 1;140(3):290-6. doi: 10.1093/oxfordjournals.aje.a117248.

Abstract

Meta-analysis is essential for obtaining reproducible summaries of study results and valuable for discovering patterns among study results. A good meta-analysis will highlight and delineate the subjective components of these processes and vigorously search for sources of heterogeneity. Unfortunately, these objective are not always met by common techniques. For example, a scatterplot is an objective summarization if the data are uncensored, but inferred patterns should be regarded as subjective recognitions of the analyst, not objective data properties. Random-effects summaries encourage averaging over important data patterns, divert attention from key sources of heterogeneity, and can amplify distortions produced by publication bias; such summaries should only be used when important heterogeneity remains after a thorough search for the sources of such heterogeneity. Quality scoring adds the analyst's subjective bias to the results, wastes information, and can prevent the recognition of key sources of heterogeneity; it should be completely replaced by meta-regression on quality items (the score components).

摘要

荟萃分析对于获得可重复的研究结果总结至关重要,并且对于发现研究结果之间的模式很有价值。一项好的荟萃分析将突出并描述这些过程的主观成分,并积极寻找异质性来源。不幸的是,常见技术并不总是能实现这些目标。例如,如果数据未被删失,散点图是一种客观的总结,但推断出的模式应被视为分析师的主观认知,而非客观的数据属性。随机效应总结鼓励对重要数据模式进行平均,转移对异质性关键来源的注意力,并可能放大发表偏倚产生的偏差;只有在彻底寻找此类异质性来源后仍存在重要异质性时,才应使用此类总结。质量评分会将分析师的主观偏差添加到结果中,浪费信息,并可能妨碍对异质性关键来源的识别;它应该完全被基于质量项目(评分成分)的元回归所取代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验