Suppr超能文献

青蛙的肌肉声音频率受骨骼肌张力调节。

Muscle sound frequencies of the frog are modulated by skeletal muscle tension.

作者信息

Cole N M, Barry D T

机构信息

Department of Physical Medicine and Rehabilitation, University of Michigan Medical Center, University Hospital, Ann Arbor 48109-0042.

出版信息

Biophys J. 1994 Apr;66(4):1104-14. doi: 10.1016/S0006-3495(94)80891-4.

Abstract

The purpose of this study was to determine the relationships among muscle sound frequencies, muscle tension, and stiffness. Time-frequency transformations of nonstationary acoustic signals provided measures of resonant frequency during isometric contractions of frog (Rana pipiens) semitendinosus and gastrocnemius muscles. A mathematical expression for muscle transverse resonant frequency, elastic modulus and tension, based on elastic beam theory, was formulated by the Rayleigh method adapted for muscles. For thin muscles, the elastic modulus was found to have negligible influence on transverse muscle resonant frequency. Changes in muscle tension were the major determinants of changes in transverse resonant frequency. Consequently, for thin muscles, the time course of muscle tension, but not elastic modulus, can be monitored acoustically during the early phase of contraction when muscles give rise to sounds. Muscles were found to be anisotropic with a modulus of elasticity, EL, measured via length perturbations near 0.1% muscle length peak-to-peak, that was much larger than the modulus of elasticity, Eb, that resists the lateral bending that causes sound production. The elastic and resonant behavior of a thin muscle is similar to a tensioned fibrous cable with distributed mass.

摘要

本研究的目的是确定肌肉声音频率、肌肉张力和刚度之间的关系。非平稳声学信号的时频变换提供了青蛙(豹蛙)半腱肌和腓肠肌等长收缩期间共振频率的测量值。基于弹性梁理论,采用适用于肌肉的瑞利方法,推导了肌肉横向共振频率、弹性模量和张力的数学表达式。对于细肌肉,发现弹性模量对横向肌肉共振频率的影响可忽略不计。肌肉张力的变化是横向共振频率变化的主要决定因素。因此,对于细肌肉,在肌肉发出声音的收缩早期阶段,可以通过声学监测肌肉张力的时间进程,而不是弹性模量。研究发现,肌肉是各向异性的,通过在接近0.1%肌肉长度峰峰值处的长度扰动测量的弹性模量EL,远大于抵抗导致声音产生的横向弯曲的弹性模量Eb。细肌肉的弹性和共振行为类似于具有分布质量的张紧纤维索。

相似文献

1
Muscle sound frequencies of the frog are modulated by skeletal muscle tension.
Biophys J. 1994 Apr;66(4):1104-14. doi: 10.1016/S0006-3495(94)80891-4.
2
Muscle sounds are emitted at the resonant frequencies of skeletal muscle.
IEEE Trans Biomed Eng. 1990 May;37(5):525-31. doi: 10.1109/10.55644.
3
Muscle stiffness measured under conditions simulating natural sound production.
Biophys J. 1990 Aug;58(2):557-65. doi: 10.1016/S0006-3495(90)82399-7.
4
X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
Biophys J. 1994 Dec;67(6):2422-35. doi: 10.1016/S0006-3495(94)80729-5.
5
The mechanism of low-frequency sound production in muscle.
Biophys J. 1987 May;51(5):775-83. doi: 10.1016/S0006-3495(87)83404-5.
7
Acoustic signals from frog skeletal muscle.
Biophys J. 1987 May;51(5):769-73. doi: 10.1016/S0006-3495(87)83403-3.
8
A non-cross-bridge stiffness in activated frog muscle fibers.
Biophys J. 2002 Jun;82(6):3118-27. doi: 10.1016/S0006-3495(02)75653-1.

引用本文的文献

1
Tensiomyography Allows to Discriminate between Injured and Non-Injured Biceps Femoris Muscle.
Biology (Basel). 2022 May 13;11(5):746. doi: 10.3390/biology11050746.
2
Mechanomyogram amplitude vs. isometric ankle plantarflexion torque of human medial gastrocnemius muscle at different ankle joint angles.
J Electromyogr Kinesiol. 2021 Dec;61:102609. doi: 10.1016/j.jelekin.2021.102609. Epub 2021 Oct 13.
3
Emission of Biophotons and Adjustable Sounds by the Fascial System: Review and Reflections for Manual Therapy.
J Evid Based Integr Med. 2018 Jan-Dec;23:2515690X17750750. doi: 10.1177/2515690X17750750.
4
Muscle tension dynamics of isolated frog muscle with application of perpendicular distortion.
Eur J Appl Physiol. 2005 Jan;93(4):489-95. doi: 10.1007/s00421-004-1204-4. Epub 2004 Aug 20.
5
Technical aspects of mechnomyography recording with piezoelectric contact sensor.
Med Biol Eng Comput. 1998 Sep;36(5):557-61. doi: 10.1007/BF02524423.
6
Time-frequency analysis of the muscle sound of the human diaphragm.
Med Biol Eng Comput. 1997 Nov;35(6):649-52. doi: 10.1007/BF02510973.

本文引用的文献

1
INFLUENCE OF OSMOTIC STRENGTH ON CROSS-SECTION AND VOLUME OF ISOLATED SINGLE MUSCLE FIBRES.
J Physiol. 1965 Mar;177(1):42-57. doi: 10.1113/jphysiol.1965.sp007574.
2
Low frequency sounds from sustained contraction of human skeletal muscle.
Biophys J. 1980 Apr;30(1):119-27. doi: 10.1016/S0006-3495(80)85080-6.
3
Contractile properties of bundles of fiber segments from skeletal muscles.
Am J Physiol. 1982 Jul;243(1):C66-73. doi: 10.1152/ajpcell.1982.243.1.C66.
4
Stiffness, force, and sarcomere shortening during a twitch in frog semitendinosus muscle bundles.
Biophys J. 1984 Feb;45(2):389-97. doi: 10.1016/S0006-3495(84)84163-6.
5
A stochastic signal method for measuring dynamic mechanical properties of muscle.
J Appl Physiol. 1971 Dec;31(6):913-25. doi: 10.1152/jappl.1971.31.6.913.
6
Acoustic myography: a noninvasive monitor of motor unit fatigue.
Muscle Nerve. 1985 Mar-Apr;8(3):189-94. doi: 10.1002/mus.880080303.
8
Stiffness and force in activated frog skeletal muscle fibers.
Biophys J. 1986 Feb;49(2):437-51. doi: 10.1016/S0006-3495(86)83653-0.
9
The mechanism of low-frequency sound production in muscle.
Biophys J. 1987 May;51(5):775-83. doi: 10.1016/S0006-3495(87)83404-5.
10
Acoustic signals from frog skeletal muscle.
Biophys J. 1987 May;51(5):769-73. doi: 10.1016/S0006-3495(87)83403-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验