Suppr超能文献

细菌视紫红质和视紫红质中视网膜席夫碱旁结合水分子的证据:席夫碱氢/氘交换的共振拉曼研究

Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.

作者信息

Deng H, Huang L, Callender R, Ebrey T

机构信息

Department of Physics, City College of the City University of New York, New York 10031.

出版信息

Biophys J. 1994 Apr;66(4):1129-36. doi: 10.1016/S0006-3495(94)80893-8.

Abstract

The retinal chromophores of both rhodopsin and bacteriorhodopsin are bound to their apoproteins via a protonated Schiff base. We have employed continuous-flow resonance Raman experiments on both pigments to determine that the exchange of a deuteron on the Schiff base with a proton is very fast, with half-times of 6.9 +/- 0.9 and 1.3 +/- 0.3 ms for rhodopsin and bacteriorhodopsin, respectively. When these results are analyzed using standard hydrogen-deuteron exchange mechanisms, i.e., acid-, base-, or water-catalyzed schemes, it is found that none of these can explain the experimental results. Because the exchange rates are found to be independent of pH, the deuterium-hydrogen exchange can not be hydroxyl (or acid-)-catalyzed. Moreover, the deuterium-hydrogen exchange of the retinal Schiff base cannot be catalyzed by water acting as a base because in that case the estimated exchange rate is predicted to be orders of magnitude slower than that observed. The relatively slow calculated exchange rates are essentially due to the high pKa values of the Schiff base in both rhodopsin (pKa > 17) and bacteriorhodopsin (pKa approximately 13.5). We have also measured the deuterium-hydrogen exchange of a protonated Schiff base model compound in aqueous solution. Its exchange characteristics, in contrast to the Schiff bases of the pigments, is pH-dependent and consistent with the standard base-catalyzed schemes. Remarkably, the water-catalyzed exchange, which has a half-time of 16 +/- 2 ms and which dominates at pH 3.0 and below, is slower than the exchange rate of the Schiff base in rhodopsin and bacteriorhodopsin. Thus, there are two anomalous results, the inconsistency of the observed hydrogen exchange rates of retinal Schiff base in the two pigments with those predicted from the standard exchange schemes and the enhancement of the rate of hydrogen exchange in the two proteins over the model Schiff base in aqueous solution. We suggest that these results are explained by the presence of a structural water molecule (or molecules) at the retinal binding sites of the two pigments, quite close, probably-hydrogen bonded, to the Schiff base proton. In this case, the rate of exchange can be faster than that found for the model compound due to an "effective water concentration" near the Schiff base that is increased from that found in aqueous solution.

摘要

视紫红质和细菌视紫红质的视网膜发色团均通过质子化席夫碱与它们的脱辅基蛋白结合。我们对这两种色素进行了连续流动共振拉曼实验,以确定席夫碱上的氘核与质子的交换非常快,视紫红质和细菌视紫红质的半衰期分别为6.9±0.9毫秒和1.3±0.3毫秒。当使用标准的氢-氘交换机制(即酸催化、碱催化或水催化方案)分析这些结果时,发现这些机制均无法解释实验结果。由于发现交换速率与pH无关,所以氘-氢交换不可能是由羟基(或酸)催化的。此外,视网膜席夫碱的氘-氢交换也不可能由作为碱的水催化,因为在那种情况下,预计的交换速率要比观察到的慢几个数量级。计算得到的相对较慢的交换速率主要是由于视紫红质(pKa>17)和细菌视紫红质(pKa约为13.5)中席夫碱的高pKa值。我们还测量了质子化席夫碱模型化合物在水溶液中的氘-氢交换。与色素的席夫碱不同,其交换特性依赖于pH,并且与标准碱催化方案一致。值得注意的是,水催化交换的半衰期为16±2毫秒,在pH 3.0及以下占主导,但其比视紫红质和细菌视紫红质中席夫碱的交换速率要慢。因此,出现了两个异常结果,即两种色素中视网膜席夫碱的观察到的氢交换速率与从标准交换方案预测的速率不一致,以及两种蛋白质中的氢交换速率比水溶液中的模型席夫碱有所提高。我们认为,这些结果可以通过两种色素的视网膜结合位点处存在一个(或多个)结构水分子来解释,该水分子与席夫碱质子非常接近,可能通过氢键相连。在这种情况下,由于席夫碱附近的“有效水浓度”比水溶液中的有所增加,交换速率可能比模型化合物的更快。

相似文献

2
On the mechanism of hydrogen-deuterium exchange in bacteriorhodopsin.
Biophys J. 1981 Feb;33(2):275-9. doi: 10.1016/S0006-3495(81)84889-8.
3
pKa of the protonated Schiff base of bovine rhodopsin. A study with artificial pigments.
Biophys J. 1993 May;64(5):1499-502. doi: 10.1016/S0006-3495(93)81518-2.
4
FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
Biochemistry. 2007 May 8;46(18):5365-73. doi: 10.1021/bi700143g. Epub 2007 Apr 12.
7
Absorption of schiff-base retinal chromophores in vacuo.
J Am Chem Soc. 2005 Sep 7;127(35):12347-50. doi: 10.1021/ja051638j.
9
Exchange kinetics of the Schiff base proton in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1980 Nov;77(11):6571-3. doi: 10.1073/pnas.77.11.6571.

引用本文的文献

1
The significance of G protein-coupled receptor crystallography for drug discovery.
Pharmacol Rev. 2011 Dec;63(4):901-37. doi: 10.1124/pr.110.003350.
2
Role of bulk water in hydrolysis of the rhodopsin chromophore.
J Biol Chem. 2011 May 27;286(21):18930-7. doi: 10.1074/jbc.M111.234583. Epub 2011 Apr 1.
3
Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8555-60. doi: 10.1073/pnas.0903545106. Epub 2009 May 11.
4
Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
Gene. 2006 Jan 3;365:95-103. doi: 10.1016/j.gene.2005.09.028. Epub 2005 Dec 15.
5
Molecular mechanism of spontaneous pigment activation in retinal cones.
Biophys J. 2002 Jul;83(1):184-93. doi: 10.1016/S0006-3495(02)75160-6.
6
Molecular genetics and the evolution of ultraviolet vision in vertebrates.
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11731-6. doi: 10.1073/pnas.201257398.
8
Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change.
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7366-71. doi: 10.1073/pnas.97.13.7366.
10
The role of water in the extracellular half channel of bacteriorhodopsin.
Biophys J. 1997 Nov;73(5):2718-25. doi: 10.1016/S0006-3495(97)78300-0.

本文引用的文献

1
pKa of the protonated Schiff base of bovine rhodopsin. A study with artificial pigments.
Biophys J. 1993 May;64(5):1499-502. doi: 10.1016/S0006-3495(93)81518-2.
2
The involvement of water at the retinal binding site in rhodopsin and early light-induced intramolecular proton transfer.
Photochem Photobiol. 1981 Feb;33(2):229-34. doi: 10.1111/j.1751-1097.1981.tb05329.x.
3
On the mechanism of hydrogen-deuterium exchange in bacteriorhodopsin.
Biophys J. 1981 Feb;33(2):275-9. doi: 10.1016/S0006-3495(81)84889-8.
4
Acid-base equilibrium of the Schiff base in bacteriorhodopsin.
Biochemistry. 1982 Sep 28;21(20):4953-9. doi: 10.1021/bi00263a019.
5
Exchange kinetics of the Schiff base proton in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1980 Nov;77(11):6571-3. doi: 10.1073/pnas.77.11.6571.
6
Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect.
Proc Natl Acad Sci U S A. 1971 Aug;68(8):1678-83. doi: 10.1073/pnas.68.8.1678.
7
Hydrogen exchange.
Annu Rev Biochem. 1972;41:903-24. doi: 10.1146/annurev.bi.41.070172.004351.
8
Rhodopsin content in the outer segment membranes of bovine and frog retinal rods.
Biochemistry. 1974 May 21;13(11):2438-44. doi: 10.1021/bi00708a031.
10
Amide proton exchange as a probe of protein folding pathways.
Methods Enzymol. 1986;131:136-56. doi: 10.1016/0076-6879(86)31039-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验