Suppr超能文献

视网膜锥体细胞中色素自发激活的分子机制。

Molecular mechanism of spontaneous pigment activation in retinal cones.

作者信息

Sampath Alapakkam P, Baylor Denis A

机构信息

Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.

出版信息

Biophys J. 2002 Jul;83(1):184-93. doi: 10.1016/S0006-3495(02)75160-6.

Abstract

Spontaneous current and voltage fluctuations (dark noise) in the photoreceptor cells of the retina limit the ability of the visual system to detect dim light. We recorded the dark current noise of individual salamander L cones. Previous work showed that the dark noise in these cells arises from thermal activation of the visual pigment. From the temperature dependence of the rate of occurrence of elementary noise events, we found an Arrhenius activation energy E(a) of 25 +/- 7 kcal/mol (mean +/- SD). This E(a) is similar to that reported for the thermal isomerization of 11-cis retinal in solution, suggesting that the cone pigment noise results from isomerization of the retinal chromophore. E(a) for the cone noise is similar to that previously reported for the "photon-like" noise of rods, but the preexponential factor is five orders of magnitude higher. To test the hypothesis that thermal isomerization can only occur in molecules whose Schiff base linkage is unprotonated, we changed the pH of the solution bathing the cone outer segment. This had little effect on the rate of occurrence of elementary noise events. The rate was also unchanged when the cone was exposed to Ringer solution made up from heavy water, whose solvent isotope effect should reduce the probability, that the Schiff base nitrogen is naked.

摘要

视网膜光感受器细胞中的自发电流和电压波动(暗噪声)限制了视觉系统检测暗光的能力。我们记录了单个蝾螈L视锥细胞的暗电流噪声。先前的研究表明,这些细胞中的暗噪声源于视觉色素的热激活。从基本噪声事件发生率的温度依赖性,我们发现阿仑尼乌斯活化能E(a)为25±7千卡/摩尔(平均值±标准差)。这个E(a)与溶液中11-顺式视黄醛热异构化报道的值相似,表明视锥色素噪声是由视黄醛发色团的异构化引起的。视锥噪声的E(a)与先前报道的视杆细胞“类光子”噪声的E(a)相似,但指数前因子高五个数量级。为了检验热异构化只能发生在席夫碱键未质子化的分子中的假设,我们改变了浸泡视锥细胞外段的溶液的pH值。这对基本噪声事件的发生率几乎没有影响。当视锥细胞暴露于由重水制成的林格氏溶液时,发生率也没有变化,重水的溶剂同位素效应应该会降低席夫碱氮裸露的概率。

相似文献

1
Molecular mechanism of spontaneous pigment activation in retinal cones.
Biophys J. 2002 Jul;83(1):184-93. doi: 10.1016/S0006-3495(02)75160-6.
3
Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods.
J Physiol. 2007 Nov 15;585(Pt 1):57-74. doi: 10.1113/jphysiol.2007.142935. Epub 2007 Sep 20.
4
Role of visual pigment properties in rod and cone phototransduction.
Nature. 2003 Oct 2;425(6957):526-31. doi: 10.1038/nature01992.
5
The pKa of the protonated Schiff bases of gecko cone and octopus visual pigments.
Biophys J. 1994 Aug;67(2):848-54. doi: 10.1016/S0006-3495(94)80544-2.
6
The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.
J Gen Physiol. 2005 Jun;125(6):641-60. doi: 10.1085/jgp.200509277.
7
The cone-specific visual cycle.
Prog Retin Eye Res. 2011 Mar;30(2):115-28. doi: 10.1016/j.preteyeres.2010.11.001. Epub 2010 Nov 25.
8
Dark noise in the outer segment membrane current of green rod photoreceptors from toad retina.
J Physiol. 1984 Apr;349:607-18. doi: 10.1113/jphysiol.1984.sp015176.
9
Origin and functional impact of dark noise in retinal cones.
Neuron. 2000 Apr;26(1):181-6. doi: 10.1016/s0896-6273(00)81148-4.

引用本文的文献

1
Dark continuous noise from visual pigment as a major mechanism underlying rod-cone difference in light sensitivity.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2418031121. doi: 10.1073/pnas.2418031121. Epub 2024 Dec 10.
2
Genetic manipulation of rod-cone differences in mouse retina.
PLoS One. 2024 May 6;19(5):e0300584. doi: 10.1371/journal.pone.0300584. eCollection 2024.
3
Origin of Discrete and Continuous Dark Noise in Rod Photoreceptors.
eNeuro. 2023 Nov 29;10(11). doi: 10.1523/ENEURO.0390-23.2023. Print 2023 Nov.
4
Effects of cell size and bicarbonate on single photon response variability in retinal rods.
Front Mol Neurosci. 2022 Dec 14;15:1050545. doi: 10.3389/fnmol.2022.1050545. eCollection 2022.
5
Apo-Opsin and Its Dark Constitutive Activity across Retinal Cone Subtypes.
Curr Biol. 2020 Dec 21;30(24):4921-4931.e5. doi: 10.1016/j.cub.2020.09.062. Epub 2020 Oct 15.
7
Multi-scale, numerical modeling of spatio-temporal signaling in cone phototransduction.
PLoS One. 2019 Jul 25;14(7):e0219848. doi: 10.1371/journal.pone.0219848. eCollection 2019.
8
Why are rods more sensitive than cones?
J Physiol. 2016 Oct 1;594(19):5415-26. doi: 10.1113/JP272556. Epub 2016 Jul 21.
9
Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity.
J Biol Chem. 2015 Apr 24;290(17):11052-60. doi: 10.1074/jbc.M115.650408. Epub 2015 Mar 12.

本文引用的文献

1
ENERGY, QUANTA, AND VISION.
J Gen Physiol. 1942 Jul 20;25(6):819-40. doi: 10.1085/jgp.25.6.819.
2
The Synthesis of Rhodopsin from Retinene(1).
Proc Natl Acad Sci U S A. 1950 Feb;36(2):84-92. doi: 10.1073/pnas.36.2.84.
3
Iodopsin.
J Gen Physiol. 1955 May 20;38(5):623-81. doi: 10.1085/jgp.38.5.623.
4
The rhodopsin system of the squid.
J Gen Physiol. 1958 Jan 20;41(3):501-28. doi: 10.1085/jgp.41.3.501.
5
Purkinje shift and retinal noise.
Nature. 1957 Feb 2;179(4553):255-6. doi: 10.1038/179255b0.
7
A visual pigment expressed in both rod and cone photoreceptors.
Neuron. 2001 Nov 8;32(3):451-61. doi: 10.1016/s0896-6273(01)00482-2.
8
Crystal structure of rhodopsin: A G protein-coupled receptor.
Science. 2000 Aug 4;289(5480):739-45. doi: 10.1126/science.289.5480.739.
10
Origin and functional impact of dark noise in retinal cones.
Neuron. 2000 Apr;26(1):181-6. doi: 10.1016/s0896-6273(00)81148-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验